# biomarker-MCP
Natural language interface for celltype marker query through MCP.
## đĒŠ What can it do?
- query celltype marker from CellMarker database by natural language
- will add more database
## â Who is this for?
- Anyone who wants to do query celltype marker with natural language!
- Agent developers who want to query cell markers for their applications
## đ Where to use it?
You can use biomarker-mcp in most AI clients, plugins, or agent frameworks that support the MCP:
- AI clients, like Cherry Studio
- Plugins, like Cline
- Agent frameworks, like Agno
## đŦ Demo
A demo showing query celltype markers in a AI client Cherry Studio using natural language based on biomarker-mcp
https://github.com/user-attachments/assets/71268f6f-c74d-4142-ad7a-893b411d748a
## đ Documentation
scmcphub's complete documentation is available at https://docs.scmcphub.org
## đī¸ Quickstart
### Install
Install from PyPI
```
pip install biomarker-mcp
```
you can test it by running
```
biomarker-mcp run
```
#### run biomarker-mcp locally
Refer to the following configuration in your MCP client:
check path
```
$ which biomarker
/home/test/bin/biomarker-mcp
```
```
"mcpServers": {
"biomarker-mcp": {
"command": "/home/test/bin/biomarker-mcp",
"args": [
"run"
]
}
}
```
#### run biomarker-server remotely
Refer to the following configuration in your MCP client:
run it in your server
```
biomarker-mcp run --transport shttp --port 8000
```
Then configure your MCP client in local AI client, like this:
```
"mcpServers": {
"biomarker-mcp": {
"url": "http://localhost:8000/mcp"
}
}
```
## đ¤ Contributing
If you have any questions, welcome to submit an issue, or contact me(hsh-me@outlook.com). Contributions to the code are also welcome!
## Citing
If you use biomarker-mcp in for your research, please consider citing following work:
> Congxue Hu, Tengyue Li, Yingqi Xu, Xinxin Zhang, Feng Li, Jing Bai, Jing Chen, Wenqi Jiang, Kaiyue Yang, Qi Ou, Xia Li, Peng Wang, Yunpeng Zhang, CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D870âD876, https://doi.org/10.1093/nar/gkac947
Raw data
{
"_id": null,
"home_page": null,
"name": "biomarker-mcp",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "AI, agent, bioinformatics, biomarker, celltype, gene marker, llm, mcp, model context protocol, scRNA-seq, single cell",
"author": null,
"author_email": "shuang <hsh-me@outlook.com>",
"download_url": "https://files.pythonhosted.org/packages/72/6e/b3ecefb54311a1ae5244176e2835d03a2075f61c1c827a1983e271c51e54/biomarker_mcp-0.2.1.tar.gz",
"platform": null,
"description": "# biomarker-MCP\n\nNatural language interface for celltype marker query through MCP.\n\n## \ud83e\udea9 What can it do?\n\n- query celltype marker from CellMarker database by natural language\n- will add more database\n\n## \u2753 Who is this for?\n\n- Anyone who wants to do query celltype marker with natural language!\n- Agent developers who want to query cell markers for their applications\n\n## \ud83c\udf10 Where to use it?\n\nYou can use biomarker-mcp in most AI clients, plugins, or agent frameworks that support the MCP:\n\n- AI clients, like Cherry Studio\n- Plugins, like Cline\n- Agent frameworks, like Agno \n\n## \ud83c\udfac Demo\n\nA demo showing query celltype markers in a AI client Cherry Studio using natural language based on biomarker-mcp\n\nhttps://github.com/user-attachments/assets/71268f6f-c74d-4142-ad7a-893b411d748a\n\n\n## \ud83d\udcda Documentation\n\nscmcphub's complete documentation is available at https://docs.scmcphub.org\n\n## \ud83c\udfce\ufe0f Quickstart\n\n### Install\n\nInstall from PyPI\n```\npip install biomarker-mcp\n```\nyou can test it by running\n```\nbiomarker-mcp run\n```\n\n\n#### run biomarker-mcp locally\nRefer to the following configuration in your MCP client:\n\ncheck path\n```\n$ which biomarker \n/home/test/bin/biomarker-mcp\n```\n\n```\n\"mcpServers\": {\n \"biomarker-mcp\": {\n \"command\": \"/home/test/bin/biomarker-mcp\",\n \"args\": [\n \"run\"\n ]\n }\n}\n```\n\n#### run biomarker-server remotely\nRefer to the following configuration in your MCP client:\n\nrun it in your server\n```\nbiomarker-mcp run --transport shttp --port 8000\n```\n\nThen configure your MCP client in local AI client, like this:\n```\n\n\"mcpServers\": {\n \"biomarker-mcp\": {\n \"url\": \"http://localhost:8000/mcp\"\n }\n}\n```\n\n## \ud83e\udd1d Contributing\n\nIf you have any questions, welcome to submit an issue, or contact me(hsh-me@outlook.com). Contributions to the code are also welcome!\n\n## Citing\n\nIf you use biomarker-mcp in for your research, please consider citing following work: \n> Congxue Hu, Tengyue Li, Yingqi Xu, Xinxin Zhang, Feng Li, Jing Bai, Jing Chen, Wenqi Jiang, Kaiyue Yang, Qi Ou, Xia Li, Peng Wang, Yunpeng Zhang, CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data, Nucleic Acids Research, Volume 51, Issue D1, 6 January 2023, Pages D870\u2013D876, https://doi.org/10.1093/nar/gkac947\n",
"bugtrack_url": null,
"license": null,
"summary": "Natural language interface for celltype marker query through MCP.",
"version": "0.2.1",
"project_urls": {
"Homepage": "https://github.com/scmcphub/biomarker-mcp",
"Repository": "https://github.com/scmcphub/biomarker-mcp"
},
"split_keywords": [
"ai",
" agent",
" bioinformatics",
" biomarker",
" celltype",
" gene marker",
" llm",
" mcp",
" model context protocol",
" scrna-seq",
" single cell"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "f61be3bf92e3b0bc650658536990191f5b4b002954488053a4ce6dc757868da5",
"md5": "ef2184b17b04a4346d14aba4343122b7",
"sha256": "66548dfd99755c0037046aa7e1f7e9196a28f7003894181e8572798146a021a9"
},
"downloads": -1,
"filename": "biomarker_mcp-0.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ef2184b17b04a4346d14aba4343122b7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 3400444,
"upload_time": "2025-08-20T17:44:58",
"upload_time_iso_8601": "2025-08-20T17:44:58.998877Z",
"url": "https://files.pythonhosted.org/packages/f6/1b/e3bf92e3b0bc650658536990191f5b4b002954488053a4ce6dc757868da5/biomarker_mcp-0.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "726eb3ecefb54311a1ae5244176e2835d03a2075f61c1c827a1983e271c51e54",
"md5": "b5cd3f5df7400c7f19c1980d6d3fe7ad",
"sha256": "bb983efc5ca50f301e64530d2c9ec78b2f91fdbda271c83b7aadb34d64fb634d"
},
"downloads": -1,
"filename": "biomarker_mcp-0.2.1.tar.gz",
"has_sig": false,
"md5_digest": "b5cd3f5df7400c7f19c1980d6d3fe7ad",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 3282356,
"upload_time": "2025-08-20T17:45:00",
"upload_time_iso_8601": "2025-08-20T17:45:00.518406Z",
"url": "https://files.pythonhosted.org/packages/72/6e/b3ecefb54311a1ae5244176e2835d03a2075f61c1c827a1983e271c51e54/biomarker_mcp-0.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-20 17:45:00",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "scmcphub",
"github_project": "biomarker-mcp",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "biomarker-mcp"
}