bisum


Namebisum JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/jcandane/bisum/
Summarybinary sparse and dense tensor partial-tracing
upload_time2023-07-27 00:31:51
maintainer
docs_urlNone
authorJulio Candanedo
requires_python
licenseMIT
keywords pytorch torch tensors sparse tensor sparse contraction partial-tracing einsum tensordot attention
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # bisum

PyTorch Sparse-Tensor Partial-Trace
This program traces 2 sparse-tensor (torch.tensor objects) via 3 Tracing-Prescription:
1. {einsum} string (like numpy, str, labelling each tensor axis)
2. ncon (used in the tensor-network community, list of 1d int torch.tensor, labelling each tensor axis)
3. adjacency-matrix (as in numpy.tensordot, (2,n) 2d int torch.tensor, with n being the number of indices idenified between the two tensors)

## API

Let's begin by initializing the 2 tensors, we can initialize random-sparse-tensors 
```python
from bisum.bisum import bisum
import torch

shape_A = torch.tensor([8,7,7,4,11,6])
shape_B = torch.tensor([9,7,3,7,11,8])
A = torch.rand(shape_A)
B = torch.rand(shape_B)
```

Suppose we would like to compute the following partial-trace/tensor-contraction $C_{njwl} = A_{iksndj} B_{wklsdi}$:
```python
C_einsum = bisum("iksndj, wklsdi -> njwl", A, B)
C_ncon   = bisum([[-1,-2,-3,4,-5,6],[1,-2,3,-3,-5,-1]], A, B)
C_adjmat = bisum(torch.tensor([[0,1,2,4],[5,1,3,4]]), A, B)

print( torch.allclose(C_einsum, C_ncon) and torch.allclose(C_ncon, C_adjmat) )
```
while the pure tensor-product, $\otimes$ is:
```python
C_einsum = bisum("abcdef, ghijkl", A, B)
C_ncon   = bisum([], A, B)
C_adjmat = bisum(torch.tensor([]), A, B)

print( np.allclose(C_einsum, C_ncon) and np.allclose(C_ncon, C_adjmat) )
```

## Install

```bash
pip install bisum
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jcandane/bisum/",
    "name": "bisum",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "pytorch,torch,tensors,Sparse Tensor,Sparse,contraction,partial-tracing,einsum,tensordot,attention",
    "author": "Julio Candanedo",
    "author_email": "juliojcandanedo@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/08/b6/6e4e33a211efd7bb16463855bb56d3f1f7e89c750142ad23d37eb10c39f0/bisum-0.1.1.tar.gz",
    "platform": null,
    "description": "# bisum\n\nPyTorch Sparse-Tensor Partial-Trace\nThis program traces 2 sparse-tensor (torch.tensor objects) via 3 Tracing-Prescription:\n1. {einsum} string (like numpy, str, labelling each tensor axis)\n2. ncon (used in the tensor-network community, list of 1d int torch.tensor, labelling each tensor axis)\n3. adjacency-matrix (as in numpy.tensordot, (2,n) 2d int torch.tensor, with n being the number of indices idenified between the two tensors)\n\n## API\n\nLet's begin by initializing the 2 tensors, we can initialize random-sparse-tensors \n```python\nfrom bisum.bisum import bisum\nimport torch\n\nshape_A = torch.tensor([8,7,7,4,11,6])\nshape_B = torch.tensor([9,7,3,7,11,8])\nA = torch.rand(shape_A)\nB = torch.rand(shape_B)\n```\n\nSuppose we would like to compute the following partial-trace/tensor-contraction $C_{njwl} = A_{iksndj} B_{wklsdi}$:\n```python\nC_einsum = bisum(\"iksndj, wklsdi -> njwl\", A, B)\nC_ncon   = bisum([[-1,-2,-3,4,-5,6],[1,-2,3,-3,-5,-1]], A, B)\nC_adjmat = bisum(torch.tensor([[0,1,2,4],[5,1,3,4]]), A, B)\n\nprint( torch.allclose(C_einsum, C_ncon) and torch.allclose(C_ncon, C_adjmat) )\n```\nwhile the pure tensor-product, $\\otimes$ is:\n```python\nC_einsum = bisum(\"abcdef, ghijkl\", A, B)\nC_ncon   = bisum([], A, B)\nC_adjmat = bisum(torch.tensor([]), A, B)\n\nprint( np.allclose(C_einsum, C_ncon) and np.allclose(C_ncon, C_adjmat) )\n```\n\n## Install\n\n```bash\npip install bisum\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "binary sparse and dense tensor partial-tracing",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/jcandane/bisum/"
    },
    "split_keywords": [
        "pytorch",
        "torch",
        "tensors",
        "sparse tensor",
        "sparse",
        "contraction",
        "partial-tracing",
        "einsum",
        "tensordot",
        "attention"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c5059153dd0121c54fdf6ab156386c278e832331dad78fa2c024e49e25c0d4ef",
                "md5": "c8f221f3b76435fa203e7238772760b8",
                "sha256": "9d514726d026b9e86c799ab53bedd7629dbfb7c8bd1e40e3d513c14eedad5677"
            },
            "downloads": -1,
            "filename": "bisum-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c8f221f3b76435fa203e7238772760b8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 13300,
            "upload_time": "2023-07-27T00:31:49",
            "upload_time_iso_8601": "2023-07-27T00:31:49.480205Z",
            "url": "https://files.pythonhosted.org/packages/c5/05/9153dd0121c54fdf6ab156386c278e832331dad78fa2c024e49e25c0d4ef/bisum-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "08b66e4e33a211efd7bb16463855bb56d3f1f7e89c750142ad23d37eb10c39f0",
                "md5": "3d4b23737c551f631b39c079a84f07ef",
                "sha256": "2bbb978500f76dada72e94ec25a73e9ce1eb966dfdfee9a8a65fea533aeb01ca"
            },
            "downloads": -1,
            "filename": "bisum-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "3d4b23737c551f631b39c079a84f07ef",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 11875,
            "upload_time": "2023-07-27T00:31:51",
            "upload_time_iso_8601": "2023-07-27T00:31:51.152231Z",
            "url": "https://files.pythonhosted.org/packages/08/b6/6e4e33a211efd7bb16463855bb56d3f1f7e89c750142ad23d37eb10c39f0/bisum-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-27 00:31:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jcandane",
    "github_project": "bisum",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "bisum"
}
        
Elapsed time: 0.45838s