bliss-toolkit


Namebliss-toolkit JSON
Version 0.3 PyPI version JSON
download
home_pagehttps://github.com/prob-ml/bliss
SummaryBayesian Light Source Separator
upload_time2023-08-10 05:54:49
maintainer
docs_urlNone
authorIsmael Mendoza
requires_python>=3.10,<4.0
licenseMIT
keywords cosmology blending weak lensing bayesian ml pytorch
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![](http://portal.nersc.gov/project/dasrepo/celeste/sample_sky.jpg)


Bayesian Light Source Separator (BLISS)
========================================
[![](https://img.shields.io/badge/docs-master-blue.svg)](https://prob-ml.github.io/bliss/)
[![tests](https://github.com/prob-ml/bliss/workflows/tests/badge.svg)](https://github.com/prob-ml/bliss/actions/workflows/tests.yml)
[![codecov.io](https://codecov.io/gh/prob-ml/bliss/branch/master/graphs/badge.svg?branch=master&token=Jgzv0gn3rA)](http://codecov.io/github/prob-ml/bliss?branch=master)
[![PyPI](https://img.shields.io/pypi/v/bliss-toolkit.svg)](https://pypi.org/project/bliss-toolkit)

# Introduction

BLISS is a Bayesian method for deblending and cataloging light sources. BLISS provides
  - __Accurate estimation__ of parameters in blended field.
  - __Calibrated uncertainties__ through fitting an approximate Bayesian posterior.
  - __Scalability__ of Bayesian inference to entire astronomical surveys.

BLISS uses state-of-the-art variational inference techniques including
  - __Amortized inference__, in which a neural network maps telescope images to an approximate Bayesian posterior on parameters of interest.
  - __Variational auto-encoders__ (VAEs) to fit a flexible model for galaxy morphology and deblend galaxies.
  - __Wake-sleep algorithm__ to jointly fit the approximate posterior and model parameters such as the PSF and the galaxy VAE.

# Installation

BLISS is pip installable with the following command:

```bash
pip install bliss-toolkit
```

and the required dependencies are listed in the ``[tool.poetry.dependencies]`` block of the ``pyproject.toml`` file.

# Installation (Developers)

1. To use and install `bliss` you first need to install [poetry](https://python-poetry.org/docs/).

2. Then, install the [fftw](http://www.fftw.org) library (which is used by `galsim`). With Ubuntu you can install it by running

```bash
sudo apt-get install libfftw3-dev
```

3. Install git-lfs if you haven't already installed it for another project:

```bash
git-lfs install
```

4. Now download the bliss repo and fetch some pre-trained models and test data from git-lfs:

```bash
git clone git@github.com:prob-ml/bliss.git
```

5. To create a poetry environment with the `bliss` dependencies satisified, run

```bash
cd bliss
poetry install
poetry shell
```

6. Verify that bliss is installed correctly by running the tests both on your CPU (default) and on your GPU:

```bash
pytest
pytest --gpu
```

7. Finally, if you are planning to contribute code to this repository, consider installing our pre-commit hooks so that your code commits will be checked locally for compliance with our coding conventions:

```bash
pre-commit install
```

# Latest updates
## Galaxies
   - BLISS now includes a galaxy model based on a VAE that was trained on Galsim galaxies.
   - BLISS now includes an algorithm for detecting, measuring, and deblending galaxies.

## Stars
   - BLISS already includes the StarNet functionality from its predecessor repo: [DeblendingStarFields](https://github.com/Runjing-Liu120/DeblendingStarfields).


# References

Mallory Wang, Ismael Mendoza, Cheng Wang, Camille Avestruz, and Jeffrey Regier. *Statistical Inference for Coadded Astronomical Images.* Machine Learning and the Physical Sciences workshop, NeurIPS 2022. [arXiv:2211.09300](https://arxiv.org/abs/2211.09300)

Derek Hansen, Ismael Mendoza, Runjing Liu, Ziteng Pang, Zhe Zhao, Camille Avestruz, and Jeffrey Regier. *Scalable Bayesian Inference for Detection and Deblending in Astronomical Images*. ICML Workshop on Machine Learning for Astrophysics, 2022. [arXiv:2207.05642](https://arxiv.org/abs/2207.05642)

Runjing Liu, Jon D. McAuliffe, Jeffrey Regier, and The LSST Dark Energy Science Collaboration. *Variational Inference for Deblending Crowded Starfields*, 2021. [arXiv:2102.02409](https://arxiv.org/abs/2102.02409)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/prob-ml/bliss",
    "name": "bliss-toolkit",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.10,<4.0",
    "maintainer_email": "",
    "keywords": "cosmology,blending,weak lensing,bayesian,ml,pytorch",
    "author": "Ismael Mendoza",
    "author_email": "imendoza@umich.edu",
    "download_url": "https://files.pythonhosted.org/packages/17/42/d32d35deff38cb04d8526106f444346a3e4ffe74dbbe553313c4ab24a165/bliss_toolkit-0.3.tar.gz",
    "platform": null,
    "description": "![](http://portal.nersc.gov/project/dasrepo/celeste/sample_sky.jpg)\n\n\nBayesian Light Source Separator (BLISS)\n========================================\n[![](https://img.shields.io/badge/docs-master-blue.svg)](https://prob-ml.github.io/bliss/)\n[![tests](https://github.com/prob-ml/bliss/workflows/tests/badge.svg)](https://github.com/prob-ml/bliss/actions/workflows/tests.yml)\n[![codecov.io](https://codecov.io/gh/prob-ml/bliss/branch/master/graphs/badge.svg?branch=master&token=Jgzv0gn3rA)](http://codecov.io/github/prob-ml/bliss?branch=master)\n[![PyPI](https://img.shields.io/pypi/v/bliss-toolkit.svg)](https://pypi.org/project/bliss-toolkit)\n\n# Introduction\n\nBLISS is a Bayesian method for deblending and cataloging light sources. BLISS provides\n  - __Accurate estimation__ of parameters in blended field.\n  - __Calibrated uncertainties__ through fitting an approximate Bayesian posterior.\n  - __Scalability__ of Bayesian inference to entire astronomical surveys.\n\nBLISS uses state-of-the-art variational inference techniques including\n  - __Amortized inference__, in which a neural network maps telescope images to an approximate Bayesian posterior on parameters of interest.\n  - __Variational auto-encoders__ (VAEs) to fit a flexible model for galaxy morphology and deblend galaxies.\n  - __Wake-sleep algorithm__ to jointly fit the approximate posterior and model parameters such as the PSF and the galaxy VAE.\n\n# Installation\n\nBLISS is pip installable with the following command:\n\n```bash\npip install bliss-toolkit\n```\n\nand the required dependencies are listed in the ``[tool.poetry.dependencies]`` block of the ``pyproject.toml`` file.\n\n# Installation (Developers)\n\n1. To use and install `bliss` you first need to install [poetry](https://python-poetry.org/docs/).\n\n2. Then, install the [fftw](http://www.fftw.org) library (which is used by `galsim`). With Ubuntu you can install it by running\n\n```bash\nsudo apt-get install libfftw3-dev\n```\n\n3. Install git-lfs if you haven't already installed it for another project:\n\n```bash\ngit-lfs install\n```\n\n4. Now download the bliss repo and fetch some pre-trained models and test data from git-lfs:\n\n```bash\ngit clone git@github.com:prob-ml/bliss.git\n```\n\n5. To create a poetry environment with the `bliss` dependencies satisified, run\n\n```bash\ncd bliss\npoetry install\npoetry shell\n```\n\n6. Verify that bliss is installed correctly by running the tests both on your CPU (default) and on your GPU:\n\n```bash\npytest\npytest --gpu\n```\n\n7. Finally, if you are planning to contribute code to this repository, consider installing our pre-commit hooks so that your code commits will be checked locally for compliance with our coding conventions:\n\n```bash\npre-commit install\n```\n\n# Latest updates\n## Galaxies\n   - BLISS now includes a galaxy model based on a VAE that was trained on Galsim galaxies.\n   - BLISS now includes an algorithm for detecting, measuring, and deblending galaxies.\n\n## Stars\n   - BLISS already includes the StarNet functionality from its predecessor repo: [DeblendingStarFields](https://github.com/Runjing-Liu120/DeblendingStarfields).\n\n\n# References\n\nMallory Wang, Ismael Mendoza, Cheng Wang, Camille Avestruz, and Jeffrey Regier. *Statistical Inference for Coadded Astronomical Images.* Machine Learning and the Physical Sciences workshop, NeurIPS 2022. [arXiv:2211.09300](https://arxiv.org/abs/2211.09300)\n\nDerek Hansen, Ismael Mendoza, Runjing Liu, Ziteng Pang, Zhe Zhao, Camille Avestruz, and Jeffrey Regier. *Scalable Bayesian Inference for Detection and Deblending in Astronomical Images*. ICML Workshop on Machine Learning for Astrophysics, 2022. [arXiv:2207.05642](https://arxiv.org/abs/2207.05642)\n\nRunjing Liu, Jon D. McAuliffe, Jeffrey Regier, and The LSST Dark Energy Science Collaboration. *Variational Inference for Deblending Crowded Starfields*, 2021. [arXiv:2102.02409](https://arxiv.org/abs/2102.02409)\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Bayesian Light Source Separator",
    "version": "0.3",
    "project_urls": {
        "Documentation": "https://prob-ml.github.io/bliss/",
        "Homepage": "https://github.com/prob-ml/bliss",
        "Repository": "https://github.com/prob-ml/bliss"
    },
    "split_keywords": [
        "cosmology",
        "blending",
        "weak lensing",
        "bayesian",
        "ml",
        "pytorch"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "166907c8dec44a50115529d5db1195fdcd0163da0eef4d41262bf1f34e47cd4a",
                "md5": "206187d99d69aec5e604ffbb0fa8a3b9",
                "sha256": "ef5cdcd13fb0d27477dd046a4542bbed445a3afa24c407b58ab8a2713b7eb512"
            },
            "downloads": -1,
            "filename": "bliss_toolkit-0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "206187d99d69aec5e604ffbb0fa8a3b9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10,<4.0",
            "size": 77559,
            "upload_time": "2023-08-10T05:54:47",
            "upload_time_iso_8601": "2023-08-10T05:54:47.998997Z",
            "url": "https://files.pythonhosted.org/packages/16/69/07c8dec44a50115529d5db1195fdcd0163da0eef4d41262bf1f34e47cd4a/bliss_toolkit-0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1742d32d35deff38cb04d8526106f444346a3e4ffe74dbbe553313c4ab24a165",
                "md5": "4dccc7511905de3e0bf9c45b17c19341",
                "sha256": "1b548be57a7fb48499aa0c922380cdf42f6b3f4d6ad69a582429fc0471f0b22f"
            },
            "downloads": -1,
            "filename": "bliss_toolkit-0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "4dccc7511905de3e0bf9c45b17c19341",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10,<4.0",
            "size": 66707,
            "upload_time": "2023-08-10T05:54:49",
            "upload_time_iso_8601": "2023-08-10T05:54:49.929196Z",
            "url": "https://files.pythonhosted.org/packages/17/42/d32d35deff38cb04d8526106f444346a3e4ffe74dbbe553313c4ab24a165/bliss_toolkit-0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-10 05:54:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "prob-ml",
    "github_project": "bliss",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "bliss-toolkit"
}
        
Elapsed time: 0.09980s