brisque


Namebrisque JSON
Version 0.0.16 PyPI version JSON
download
home_pagehttps://github.com/rehanguha/brisque
SummaryImage Quality
upload_time2024-05-02 13:10:47
maintainerNone
docs_urlNone
authorRehan Guha
requires_python>=2.7
licensemit
keywords quality svm image maths
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) 

BRISQUE is a no-reference image quality score.

A good place to know how BRISQUE works : [LearnOpenCV](https://learnopencv.com/image-quality-assessment-brisque/)


## Installation

```bash
pip install brisque
```

## Usage

1. Trying to perform Image Quality Assessment on **local images** 
```python
from brisque import BRISQUE

obj = BRISQUE(url=False)
obj.score("<Ndarray of the Image>")
```

2. Trying to perform Image Quality Assessment on **web images** 
```python
from brisque import BRISQUE

obj = BRISQUE(url=True)
obj.score("<URL for the Image>")
```

### Example

#### Local Image

- Input
```python
from brisque import BRISQUE
import numpy as np
from PIL import Image

img_path = "brisque/tests/sample-image.jpg"
img = Image.open(img_path)
ndarray = np.asarray(img)

obj = BRISQUE(url=False)
obj.score(img=ndarray)
```
- Output
```
34.84883848208594
```

#### URL

- Input
```python
from brisque import BRISQUE

URL = "https://www.mathworks.com/help/examples/images/win64/CalculateBRISQUEScoreUsingCustomFeatureModelExample_01.png"

obj = BRISQUE(url=True)
obj.score(URL)
```
- Output
```
71.73427549219988
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/rehanguha/brisque",
    "name": "brisque",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=2.7",
    "maintainer_email": null,
    "keywords": "quality, svm, image, maths",
    "author": "Rehan Guha",
    "author_email": "rehanguha29@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/7b/f4/7f47afe23b9228aba4b91b7d34f56afd9b8c47454d193f2eeab8b743095a/brisque-0.0.16.tar.gz",
    "platform": null,
    "description": "# Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) \n\nBRISQUE is a no-reference image quality score.\n\nA good place to know how BRISQUE works : [LearnOpenCV](https://learnopencv.com/image-quality-assessment-brisque/)\n\n\n## Installation\n\n```bash\npip install brisque\n```\n\n## Usage\n\n1. Trying to perform Image Quality Assessment on **local images** \n```python\nfrom brisque import BRISQUE\n\nobj = BRISQUE(url=False)\nobj.score(\"<Ndarray of the Image>\")\n```\n\n2. Trying to perform Image Quality Assessment on **web images** \n```python\nfrom brisque import BRISQUE\n\nobj = BRISQUE(url=True)\nobj.score(\"<URL for the Image>\")\n```\n\n### Example\n\n#### Local Image\n\n- Input\n```python\nfrom brisque import BRISQUE\nimport numpy as np\nfrom PIL import Image\n\nimg_path = \"brisque/tests/sample-image.jpg\"\nimg = Image.open(img_path)\nndarray = np.asarray(img)\n\nobj = BRISQUE(url=False)\nobj.score(img=ndarray)\n```\n- Output\n```\n34.84883848208594\n```\n\n#### URL\n\n- Input\n```python\nfrom brisque import BRISQUE\n\nURL = \"https://www.mathworks.com/help/examples/images/win64/CalculateBRISQUEScoreUsingCustomFeatureModelExample_01.png\"\n\nobj = BRISQUE(url=True)\nobj.score(URL)\n```\n- Output\n```\n71.73427549219988\n```\n\n\n",
    "bugtrack_url": null,
    "license": "mit",
    "summary": "Image Quality",
    "version": "0.0.16",
    "project_urls": {
        "Homepage": "https://github.com/rehanguha/brisque"
    },
    "split_keywords": [
        "quality",
        " svm",
        " image",
        " maths"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "04ca31d0eaac691d01ac80fc9e903dc66616eb32ae6615fcefc90c1259917355",
                "md5": "4e717f6a043b9f12cffb00d4bc42695d",
                "sha256": "2abfb0ecbb8d392e4d8697d55854087a74cbf51bd2f7fee9bd39c1e6f2277683"
            },
            "downloads": -1,
            "filename": "brisque-0.0.16-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4e717f6a043b9f12cffb00d4bc42695d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=2.7",
            "size": 140097,
            "upload_time": "2024-05-02T13:10:45",
            "upload_time_iso_8601": "2024-05-02T13:10:45.652621Z",
            "url": "https://files.pythonhosted.org/packages/04/ca/31d0eaac691d01ac80fc9e903dc66616eb32ae6615fcefc90c1259917355/brisque-0.0.16-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7bf47f47afe23b9228aba4b91b7d34f56afd9b8c47454d193f2eeab8b743095a",
                "md5": "9cacb02ccd65bdd916d35949794d9843",
                "sha256": "10d9498a5f8b4f43660203ac2dfab11514d9937d9f09cb694805c8fd7e57b0a4"
            },
            "downloads": -1,
            "filename": "brisque-0.0.16.tar.gz",
            "has_sig": false,
            "md5_digest": "9cacb02ccd65bdd916d35949794d9843",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=2.7",
            "size": 141076,
            "upload_time": "2024-05-02T13:10:47",
            "upload_time_iso_8601": "2024-05-02T13:10:47.326209Z",
            "url": "https://files.pythonhosted.org/packages/7b/f4/7f47afe23b9228aba4b91b7d34f56afd9b8c47454d193f2eeab8b743095a/brisque-0.0.16.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-02 13:10:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "rehanguha",
    "github_project": "brisque",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "brisque"
}
        
Elapsed time: 0.26224s