canyonbpy


Namecanyonbpy JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryPython implementation of CANYON-B for oceanographic parameter predictions
upload_time2025-01-02 11:10:34
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseMIT
keywords oceanography canyon-b neural networks carbon nutrients
VCS
bugtrack_url
requirements numpy xarray matplotlib PyCO2SYS pandas scipy
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # CANYON-B Python (canyonbpy)

A Python implementation of CANYON-B (CArbonate system and Nutrients concentration from hYdrological properties and Oxygen using Neural networks) based on Bittig et al. (2018).

## Features

- Calculate macronutrients and carbonate system variables using CANYON-B neural network 

## Installation

You can install canyonbpy using pip:

```bash
pip install canyonbpy
```

## Usage

Here's a simple example of how to use canyonbpy:

```python
from datetime import datetime
from canyonbpy import canyonb


# Prepare your data
data = {
    'gtime': [datetime(2024, 1, 1)],  # Date/time 
    'lat': [45.0],          # Latitude (-90 to 90)
    'lon': [-20.0],         # Longitude (-180 to 180)
    'pres': [100.0],        # Pressure (dbar)
    'temp': [15.0],         # Temperature (°C)
    'psal': [35.0],         # Salinity
    'doxy': [250.0]         # Dissolved oxygen (µmol/kg)
}

# Make predictions
results = canyonb(**data)

# Access results
ph = results['pH']           # pH prediction
ph_error = results['pH_ci']  # pH uncertainty
```

Available parameters for prediction:
- AT: Total Alkalinity
- CT: Total Dissolved Inorganic Carbon
- pH: pH
- pCO2: Partial pressure of CO2
- NO3: Nitrate
- PO4: Phosphate
- SiOH4: Silicate

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

## License

This project is licensed under the MIT License - see the LICENSE file for details.

## Citation

If you use this package in your research, please cite both the original CANYON-B paper and this implementation:

```
@article{bittig2018canyon,
  title={An alternative to static climatologies: Robust estimation of open ocean CO2 variables and nutrient concentrations from T, S, and O2 data using Bayesian neural networks},
  author={Bittig, Henry C and Steinhoff, Tobias and Claustre, Hervé and Körtzinger, Arne and others},
  journal={Frontiers in Marine Science},
  volume={5},
  pages={328},
  year={2018},
  publisher={Frontiers}
}

@misc{canyonbpy2024,
  author = {Raphaël Bajon},
  title = {canyonbpy: A Python implementation of CANYON-B},
  year = {2024},
  publisher = {GitHub},
  url = {https://github.com/RaphaelBajon/canyonbpy}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "canyonbpy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "oceanography, CANYON-B, neural networks, carbon, nutrients",
    "author": null,
    "author_email": "Rapha\u00ebl Bajon <raphael.bajon@ifremer.fr>",
    "download_url": "https://files.pythonhosted.org/packages/5b/a4/1918aef37394f8938f883a17ed4026968b2a32116bdcf5a421c0803624e0/canyonbpy-0.1.1.tar.gz",
    "platform": null,
    "description": "# CANYON-B Python (canyonbpy)\n\nA Python implementation of CANYON-B (CArbonate system and Nutrients concentration from hYdrological properties and Oxygen using Neural networks) based on Bittig et al. (2018).\n\n## Features\n\n- Calculate macronutrients and carbonate system variables using CANYON-B neural network \n\n## Installation\n\nYou can install canyonbpy using pip:\n\n```bash\npip install canyonbpy\n```\n\n## Usage\n\nHere's a simple example of how to use canyonbpy:\n\n```python\nfrom datetime import datetime\nfrom canyonbpy import canyonb\n\n\n# Prepare your data\ndata = {\n    'gtime': [datetime(2024, 1, 1)],  # Date/time \n    'lat': [45.0],          # Latitude (-90 to 90)\n    'lon': [-20.0],         # Longitude (-180 to 180)\n    'pres': [100.0],        # Pressure (dbar)\n    'temp': [15.0],         # Temperature (\u00b0C)\n    'psal': [35.0],         # Salinity\n    'doxy': [250.0]         # Dissolved oxygen (\u00b5mol/kg)\n}\n\n# Make predictions\nresults = canyonb(**data)\n\n# Access results\nph = results['pH']           # pH prediction\nph_error = results['pH_ci']  # pH uncertainty\n```\n\nAvailable parameters for prediction:\n- AT: Total Alkalinity\n- CT: Total Dissolved Inorganic Carbon\n- pH: pH\n- pCO2: Partial pressure of CO2\n- NO3: Nitrate\n- PO4: Phosphate\n- SiOH4: Silicate\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n## License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.\n\n## Citation\n\nIf you use this package in your research, please cite both the original CANYON-B paper and this implementation:\n\n```\n@article{bittig2018canyon,\n  title={An alternative to static climatologies: Robust estimation of open ocean CO2 variables and nutrient concentrations from T, S, and O2 data using Bayesian neural networks},\n  author={Bittig, Henry C and Steinhoff, Tobias and Claustre, Herv\u00e9 and K\u00f6rtzinger, Arne and others},\n  journal={Frontiers in Marine Science},\n  volume={5},\n  pages={328},\n  year={2018},\n  publisher={Frontiers}\n}\n\n@misc{canyonbpy2024,\n  author = {Rapha\u00ebl Bajon},\n  title = {canyonbpy: A Python implementation of CANYON-B},\n  year = {2024},\n  publisher = {GitHub},\n  url = {https://github.com/RaphaelBajon/canyonbpy}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python implementation of CANYON-B for oceanographic parameter predictions",
    "version": "0.1.1",
    "project_urls": {
        "Bug Reports": "https://github.com/RaphaelBajon/canyonbpy/issues",
        "Homepage": "https://github.com/RaphaelBajon/canyonbpy",
        "Source": "https://github.com/RaphaelBajon/canyonbpy"
    },
    "split_keywords": [
        "oceanography",
        " canyon-b",
        " neural networks",
        " carbon",
        " nutrients"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f9007211172bf34e55cdb597c10b9fc12f5fa35152cee9f30a31c96355f7c112",
                "md5": "d20aed883a13ff23d43d0d81dcdb1354",
                "sha256": "054dc3e38b32bc6dbc6795145cdf86b44588a9c16efbeebfb9956905191da0af"
            },
            "downloads": -1,
            "filename": "canyonbpy-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d20aed883a13ff23d43d0d81dcdb1354",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 720869,
            "upload_time": "2025-01-02T11:10:31",
            "upload_time_iso_8601": "2025-01-02T11:10:31.858649Z",
            "url": "https://files.pythonhosted.org/packages/f9/00/7211172bf34e55cdb597c10b9fc12f5fa35152cee9f30a31c96355f7c112/canyonbpy-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5ba41918aef37394f8938f883a17ed4026968b2a32116bdcf5a421c0803624e0",
                "md5": "55f6d494ee43d005d0ed8205cf4d9e19",
                "sha256": "ec0f86da0edd4a8e75e9cbd7d46093d428df07eb1227ca962890c012fe6b2592"
            },
            "downloads": -1,
            "filename": "canyonbpy-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "55f6d494ee43d005d0ed8205cf4d9e19",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 708433,
            "upload_time": "2025-01-02T11:10:34",
            "upload_time_iso_8601": "2025-01-02T11:10:34.762608Z",
            "url": "https://files.pythonhosted.org/packages/5b/a4/1918aef37394f8938f883a17ed4026968b2a32116bdcf5a421c0803624e0/canyonbpy-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-02 11:10:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "RaphaelBajon",
    "github_project": "canyonbpy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.20.0"
                ]
            ]
        },
        {
            "name": "xarray",
            "specs": [
                [
                    ">=",
                    "0.16.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.3.0"
                ]
            ]
        },
        {
            "name": "PyCO2SYS",
            "specs": [
                [
                    ">=",
                    "1.8.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.2.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.6.0"
                ]
            ]
        }
    ],
    "lcname": "canyonbpy"
}
        
Elapsed time: 0.62367s