check-if-nan


Namecheck-if-nan JSON
Version 0.11 PyPI version JSON
download
home_pagehttps://github.com/hansalemaos/check_if_nan
SummaryChecks for all kinds of nan/None values without raising Exceptions all the time
upload_time2023-05-03 00:51:47
maintainer
docs_urlNone
authorJohannes Fischer
requires_python
licenseMIT
keywords nan none
VCS
bugtrack_url
requirements disable_warnings numpy pandas
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Checks for all kinds of nan/None values without raising Exceptions all the time


```python
from check_if_nan import is_nan,sort_nan_non_nan
import numpy as np
import pandas as pd
import math
a = None
b = pd.NA
c = np.nan
d = math.nan
e = float("nan")
f = []
g = np.array([])
h = dict()
i = tuple()
j = set()
k = ""
l = "NaN"
m = b""
n = bytearray()


print("a", is_nan(a))
print("b", is_nan(b))
print("c", is_nan(c))
print("d", is_nan(d))
print("e", is_nan(e))
print("f", is_nan(f))
print("g", is_nan(g))
print("h", is_nan(h))
print("i", is_nan(i))
print("j", is_nan(j))
print("k", is_nan(k))
print("l", is_nan(l))
print("m", is_nan(m))
print("n", is_nan(n))

print("f", is_nan(f, emptyiters=True))
print("g", is_nan(g, emptyiters=True))
print("h", is_nan(h, emptyiters=True))
print("i", is_nan(i, emptyiters=True))
print("j", is_nan(j, emptyiters=True))
print("k", is_nan(k, emptystrings=True))
print("l", is_nan(l, nastrings=True))
print("m", is_nan(m, emptybytes=True))
print("n", is_nan(n, emptyiters=True))


a True
b True
c True
d True
e True
f False
g False
h False
i False
j False
k False
l False
m False
n False


f True
g True
h True
i True
j True
k True
l True
m True
n True


sor = sort_nan_non_nan(
    seq=[a, b, c, d, e, f, g, h, i, j, k, l, m, n],
    emptyiters=False,
    nastrings=False,
    emptystrings=False,
    emptybytes=False,
)
print(sor)
# defaultdict(<class 'list'>, {True: [(0, None), (1, <NA>), (2, nan),
# (3, nan), (4, nan)], False: [(5, []), (6, array([], dtype=float64)),
# (7, {}), (8, ()), (9, set()), (10, ''), (11, 'NaN'), (12, b''),
# (13, bytearray(b''))]})

sor = sort_nan_non_nan(
    seq=[a, b, c, d, e, f, g, h, i, j, k, l, m, n],
    emptyiters=True,
    nastrings=False,
    emptystrings=False,
    emptybytes=False,
)
print(sor)
# defaultdict(<class 'list'>, {True: [(0, None), (1, <NA>), (2, nan),
# (3, nan), (4, nan), (5, []), (6, array([], dtype=float64)),
# (7, {}), (8, ()), (9, set()), (13, bytearray(b''))],
# False: [(10, ''), (11, 'NaN'), (12, b'')]})


sor = sort_nan_non_nan(
    seq=[a, b, c, d, e, f, g, h, i, j, k, l, m, n],
    emptyiters=True,
    nastrings=False,
    emptystrings=True,
    emptybytes=True,
)
print(sor)
# defaultdict(<class 'list'>, {True: [(0, None), (1, <NA>), (2, nan), (3, nan),
# (4, nan), (5, []), (6, array([], dtype=float64)), (7, {}), (8, ()),
# (9, set()), (10, ''), (12, b''), (13, bytearray(b''))], False: [(11, 'NaN')]})

sor = sort_nan_non_nan(
    seq=[a, b, c, d, e, f, g, h, i, j, k, l, m, n],
    emptyiters=True,
    nastrings=True,
    emptystrings=True,
    emptybytes=True,
)
print(sor)
# defaultdict(<class 'list'>, {True: [(0, None), (1, <NA>), (2, nan),
# (3, nan), (4, nan), (5, []), (6, array([], dtype=float64)), (7, {}),
# (8, ()), (9, set()), (10, ''), (11, 'NaN'), (12, b''), (13, bytearray(b''))]})
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hansalemaos/check_if_nan",
    "name": "check-if-nan",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "nan,None",
    "author": "Johannes Fischer",
    "author_email": "aulasparticularesdealemaosp@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/65/d3/a1324cb74dc9c8999800eddecaac9953e612a6185cf657867bbd4ce47bef/check_if_nan-0.11.tar.gz",
    "platform": null,
    "description": "# Checks for all kinds of nan/None values without raising Exceptions all the time\r\n\r\n\r\n```python\r\nfrom check_if_nan import is_nan,sort_nan_non_nan\r\nimport numpy as np\r\nimport pandas as pd\r\nimport math\r\na = None\r\nb = pd.NA\r\nc = np.nan\r\nd = math.nan\r\ne = float(\"nan\")\r\nf = []\r\ng = np.array([])\r\nh = dict()\r\ni = tuple()\r\nj = set()\r\nk = \"\"\r\nl = \"NaN\"\r\nm = b\"\"\r\nn = bytearray()\r\n\r\n\r\nprint(\"a\", is_nan(a))\r\nprint(\"b\", is_nan(b))\r\nprint(\"c\", is_nan(c))\r\nprint(\"d\", is_nan(d))\r\nprint(\"e\", is_nan(e))\r\nprint(\"f\", is_nan(f))\r\nprint(\"g\", is_nan(g))\r\nprint(\"h\", is_nan(h))\r\nprint(\"i\", is_nan(i))\r\nprint(\"j\", is_nan(j))\r\nprint(\"k\", is_nan(k))\r\nprint(\"l\", is_nan(l))\r\nprint(\"m\", is_nan(m))\r\nprint(\"n\", is_nan(n))\r\n\r\nprint(\"f\", is_nan(f, emptyiters=True))\r\nprint(\"g\", is_nan(g, emptyiters=True))\r\nprint(\"h\", is_nan(h, emptyiters=True))\r\nprint(\"i\", is_nan(i, emptyiters=True))\r\nprint(\"j\", is_nan(j, emptyiters=True))\r\nprint(\"k\", is_nan(k, emptystrings=True))\r\nprint(\"l\", is_nan(l, nastrings=True))\r\nprint(\"m\", is_nan(m, emptybytes=True))\r\nprint(\"n\", is_nan(n, emptyiters=True))\r\n\r\n\r\na True\r\nb True\r\nc True\r\nd True\r\ne True\r\nf False\r\ng False\r\nh False\r\ni False\r\nj False\r\nk False\r\nl False\r\nm False\r\nn False\r\n\r\n\r\nf True\r\ng True\r\nh True\r\ni True\r\nj True\r\nk True\r\nl True\r\nm True\r\nn True\r\n\r\n\r\nsor = sort_nan_non_nan(\r\n    seq=[a, b, c, d, e, f, g, h, i, j, k, l, m, n],\r\n    emptyiters=False,\r\n    nastrings=False,\r\n    emptystrings=False,\r\n    emptybytes=False,\r\n)\r\nprint(sor)\r\n# defaultdict(<class 'list'>, {True: [(0, None), (1, <NA>), (2, nan),\r\n# (3, nan), (4, nan)], False: [(5, []), (6, array([], dtype=float64)),\r\n# (7, {}), (8, ()), (9, set()), (10, ''), (11, 'NaN'), (12, b''),\r\n# (13, bytearray(b''))]})\r\n\r\nsor = sort_nan_non_nan(\r\n    seq=[a, b, c, d, e, f, g, h, i, j, k, l, m, n],\r\n    emptyiters=True,\r\n    nastrings=False,\r\n    emptystrings=False,\r\n    emptybytes=False,\r\n)\r\nprint(sor)\r\n# defaultdict(<class 'list'>, {True: [(0, None), (1, <NA>), (2, nan),\r\n# (3, nan), (4, nan), (5, []), (6, array([], dtype=float64)),\r\n# (7, {}), (8, ()), (9, set()), (13, bytearray(b''))],\r\n# False: [(10, ''), (11, 'NaN'), (12, b'')]})\r\n\r\n\r\nsor = sort_nan_non_nan(\r\n    seq=[a, b, c, d, e, f, g, h, i, j, k, l, m, n],\r\n    emptyiters=True,\r\n    nastrings=False,\r\n    emptystrings=True,\r\n    emptybytes=True,\r\n)\r\nprint(sor)\r\n# defaultdict(<class 'list'>, {True: [(0, None), (1, <NA>), (2, nan), (3, nan),\r\n# (4, nan), (5, []), (6, array([], dtype=float64)), (7, {}), (8, ()),\r\n# (9, set()), (10, ''), (12, b''), (13, bytearray(b''))], False: [(11, 'NaN')]})\r\n\r\nsor = sort_nan_non_nan(\r\n    seq=[a, b, c, d, e, f, g, h, i, j, k, l, m, n],\r\n    emptyiters=True,\r\n    nastrings=True,\r\n    emptystrings=True,\r\n    emptybytes=True,\r\n)\r\nprint(sor)\r\n# defaultdict(<class 'list'>, {True: [(0, None), (1, <NA>), (2, nan),\r\n# (3, nan), (4, nan), (5, []), (6, array([], dtype=float64)), (7, {}),\r\n# (8, ()), (9, set()), (10, ''), (11, 'NaN'), (12, b''), (13, bytearray(b''))]})\r\n```\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Checks for all kinds of nan/None values without raising Exceptions all the time",
    "version": "0.11",
    "project_urls": {
        "Homepage": "https://github.com/hansalemaos/check_if_nan"
    },
    "split_keywords": [
        "nan",
        "none"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4b7131681f3c0d25e578018216984c2405a0301e36aa76350179e15e35613ad2",
                "md5": "8b2a1a2970cf7f85e5494631b3b72318",
                "sha256": "92b33427fb19c1535a2fb455e54073bf488c928b21a490e28ab65f3ade5aa3c0"
            },
            "downloads": -1,
            "filename": "check_if_nan-0.11-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8b2a1a2970cf7f85e5494631b3b72318",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 22538,
            "upload_time": "2023-05-03T00:51:45",
            "upload_time_iso_8601": "2023-05-03T00:51:45.141959Z",
            "url": "https://files.pythonhosted.org/packages/4b/71/31681f3c0d25e578018216984c2405a0301e36aa76350179e15e35613ad2/check_if_nan-0.11-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "65d3a1324cb74dc9c8999800eddecaac9953e612a6185cf657867bbd4ce47bef",
                "md5": "9c95e865d6e673132ebeefae01ac24a8",
                "sha256": "bf047164e3a24fd17c37d01576d10627d371da6780979dcfe27148a7f01e1d06"
            },
            "downloads": -1,
            "filename": "check_if_nan-0.11.tar.gz",
            "has_sig": false,
            "md5_digest": "9c95e865d6e673132ebeefae01ac24a8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 22061,
            "upload_time": "2023-05-03T00:51:47",
            "upload_time_iso_8601": "2023-05-03T00:51:47.691986Z",
            "url": "https://files.pythonhosted.org/packages/65/d3/a1324cb74dc9c8999800eddecaac9953e612a6185cf657867bbd4ce47bef/check_if_nan-0.11.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-03 00:51:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "hansalemaos",
    "github_project": "check_if_nan",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "disable_warnings",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        }
    ],
    "lcname": "check-if-nan"
}
        
Elapsed time: 1.11173s