<p align="center">
<a href="https://chromatinhd.org">
<img src="https://raw.githubusercontent.com/DeplanckeLab/ChromatinHD/main/docs/source/static/logo.png" width="300" />
</a>
<a href="https://chromatinhd.org">
<img src="https://raw.githubusercontent.com/DeplanckeLab/ChromatinHD/main/docs/source/static/comparison.gif" />
</a>
</p>
ChromatinHD analyzes single-cell ATAC+RNA data using the raw fragments as input,
by automatically adapting the scale at which
relevant chromatin changes on a per-position, per-cell, and per-gene basis.
This enables identification of functional chromatin changes
regardless of whether they occur in a narrow or broad region.
As we show in [our paper](https://www.biorxiv.org/content/10.1101/2023.07.21.549899v1):
- Compared to the typical approach (peak calling + statistical analysis), ChromatinHD models are better able to capture functional chromatin changes. This is because there are extensive functional accessibility changes both outside and within peaks ([Figure 3](https://www.biorxiv.org/content/10.1101/2023.07.21.549899v1)).
- ChromatinHD models can capture long-range interactions by considering fragments co-occuring within the same cell ([Figure 4](https://www.biorxiv.org/content/10.1101/2023.07.21.549899v1)).
- ChromatinHD models can also capture changes in fragment size that are related to gene expression changes, likely driven by dense direct and indirect binding of transcription factors ([Figure 5](https://www.biorxiv.org/content/10.1101/2023.07.21.549899v1)).
[📜 Manuscript](https://www.biorxiv.org/content/10.1101/2023.07.21.549899v1)
[❔ Documentation](https://chromatinhd.org)
[▶️ Quick start](https://chromatinhd.org/quickstart/0_install)
Raw data
{
"_id": null,
"home_page": null,
"name": "chromatinhd",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "bioinformatics, chromatin accessibility, transcriptomics",
"author": null,
"author_email": "Wouter Saelens <wouter.saelens@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/d1/df/4a62bef50daa6a3af4209c55d82d032c45778aefbed0032379313e036d43/chromatinhd-0.3.10.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n <a href=\"https://chromatinhd.org\">\n <img src=\"https://raw.githubusercontent.com/DeplanckeLab/ChromatinHD/main/docs/source/static/logo.png\" width=\"300\" />\n </a>\n <a href=\"https://chromatinhd.org\">\n <img src=\"https://raw.githubusercontent.com/DeplanckeLab/ChromatinHD/main/docs/source/static/comparison.gif\" />\n </a>\n</p>\n\nChromatinHD analyzes single-cell ATAC+RNA data using the raw fragments as input,\nby automatically adapting the scale at which\nrelevant chromatin changes on a per-position, per-cell, and per-gene basis.\nThis enables identification of functional chromatin changes\nregardless of whether they occur in a narrow or broad region.\n\nAs we show in [our paper](https://www.biorxiv.org/content/10.1101/2023.07.21.549899v1):\n- Compared to the typical approach (peak calling + statistical analysis), ChromatinHD models are better able to capture functional chromatin changes. This is because there are extensive functional accessibility changes both outside and within peaks ([Figure 3](https://www.biorxiv.org/content/10.1101/2023.07.21.549899v1)).\n- ChromatinHD models can capture long-range interactions by considering fragments co-occuring within the same cell ([Figure 4](https://www.biorxiv.org/content/10.1101/2023.07.21.549899v1)).\n- ChromatinHD models can also capture changes in fragment size that are related to gene expression changes, likely driven by dense direct and indirect binding of transcription factors ([Figure 5](https://www.biorxiv.org/content/10.1101/2023.07.21.549899v1)).\n\n[\ud83d\udcdc Manuscript](https://www.biorxiv.org/content/10.1101/2023.07.21.549899v1)\n\n[\u2754 Documentation](https://chromatinhd.org)\n\n[\u25b6\ufe0f Quick start](https://chromatinhd.org/quickstart/0_install)\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "High-definition modeling of (single-cell) chromatin + transcriptomics data",
"version": "0.3.10",
"project_urls": {
"Bug Tracker": "https://github.com/DeplanckeLab/ChromatinHD/issues",
"Homepage": "https://github.com/DeplanckeLab/ChromatinHD"
},
"split_keywords": [
"bioinformatics",
" chromatin accessibility",
" transcriptomics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d1df4a62bef50daa6a3af4209c55d82d032c45778aefbed0032379313e036d43",
"md5": "037974ecade77aa592271dad45a069b8",
"sha256": "403dc8af5d3221aaa0c21a1f3a4cae4ff6b45f7e9153037fb376fd86c2634340"
},
"downloads": -1,
"filename": "chromatinhd-0.3.10.tar.gz",
"has_sig": false,
"md5_digest": "037974ecade77aa592271dad45a069b8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 25296918,
"upload_time": "2024-11-06T14:45:24",
"upload_time_iso_8601": "2024-11-06T14:45:24.525193Z",
"url": "https://files.pythonhosted.org/packages/d1/df/4a62bef50daa6a3af4209c55d82d032c45778aefbed0032379313e036d43/chromatinhd-0.3.10.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-06 14:45:24",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "DeplanckeLab",
"github_project": "ChromatinHD",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "chromatinhd"
}