clientai


Nameclientai JSON
Version 0.5.0 PyPI version JSON
download
home_pageNone
SummaryA unified client for AI providers with built-in agent support.
upload_time2024-12-29 06:07:53
maintainerNone
docs_urlNone
authorIgor Benav
requires_python<4.0,>=3.9
licenseNone
keywords ai agents llm nlp language-model ai-agents
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ClientAI

<p align="center">
  <a href="https://igorbenav.github.io/clientai/">
    <img src="assets/ClientAI.png" alt="ClientAI logo" width="45%" height="auto">
  </a>
</p>

<p align="center">
  <i>A unified client for AI providers with built-in agent support.</i>
</p>

<p align="center">
<a href="https://github.com/igorbenav/clientai/actions/workflows/tests.yml">
  <img src="https://github.com/igorbenav/clientai/actions/workflows/tests.yml/badge.svg" alt="Tests"/>
</a>
<a href="https://pypi.org/project/clientai/">
  <img src="https://img.shields.io/pypi/v/clientai?color=%2334D058&label=pypi%20package" alt="PyPi Version"/>
</a>
<a href="https://pypi.org/project/clientai/">
  <img src="https://img.shields.io/pypi/pyversions/clientai.svg?color=%2334D058" alt="Supported Python Versions"/>
</a>
</p>

---

<b>ClientAI</b> is a Python package that provides a unified framework for building AI applications, from direct provider interactions to transparent LLM-powered agents, with seamless support for OpenAI, Replicate, Groq and Ollama.

**Documentation**: [igorbenav.github.io/clientai/](https://igorbenav.github.io/clientai/)

---

## Features

- **Unified Interface**: Consistent methods across multiple AI providers (OpenAI, Replicate, Groq, Ollama).
- **Streaming Support**: Real-time response streaming and chat capabilities.
- **Intelligent Agents**: Framework for building transparent, multi-step LLM workflows with tool integration.
- **Output Validation**: Built-in validation system for ensuring structured, reliable outputs from each step.
- **Modular Design**: Use components independently, from simple provider wrappers to complete agent systems.
- **Type Safety**: Comprehensive type hints for better development experience.

## Installing

To install ClientAI with all providers, run:

```sh
pip install "clientai[all]"
```

Or, if you prefer to install only specific providers:

```sh
pip install "clientai[openai]"  # For OpenAI support
pip install "clientai[replicate]"  # For Replicate support
pip install "clientai[ollama]"  # For Ollama support
pip install "clientai[groq]"  # For Groq support
```

## Quick Start Examples

### Basic Provider Usage

```python
from clientai import ClientAI

# Initialize with OpenAI
client = ClientAI('openai', api_key="your-openai-key")

# Generate text
response = client.generate_text(
    "Tell me a joke",
    model="gpt-3.5-turbo",
)
print(response)

# Chat functionality
messages = [
    {"role": "user", "content": "What is the capital of France?"},
    {"role": "assistant", "content": "Paris."},
    {"role": "user", "content": "What is its population?"}
]

response = client.chat(
    messages,
    model="gpt-3.5-turbo",
)
print(response)
```

### Quick-Start Agent

```python
from clientai import client
from clientai.agent import create_agent, tool

@tool(name="calculator")
def calculate_average(numbers: list[float]) -> float:
    """Calculate the arithmetic mean of a list of numbers."""
    return sum(numbers) / len(numbers)

analyzer = create_agent(
    client=client("groq", api_key="your-groq-key"),
    role="analyzer", 
    system_prompt="You are a helpful data analysis assistant.",
    model="llama-3.2-3b-preview",
    tools=[calculate_average]
)

result = analyzer.run("Calculate the average of these numbers: [1000, 1200, 950, 1100]")
print(result)
```

### 3. Custom Agent with Validation

For guaranteed output structure and type safety:

```python
from clientai.agent import Agent, think
from pydantic import BaseModel, Field
from typing import List

class Analysis(BaseModel):
    summary: str = Field(min_length=10)
    key_points: List[str] = Field(min_items=1)
    sentiment: str = Field(pattern="^(positive|negative|neutral)$")

class DataAnalyzer(Agent):
    @think(
        name="analyze",
        json_output=True,  # Enable JSON formatting
    )

    def analyze_data(self, data: str) -> Analysis: # Enable validation
        """Analyze data with validated output structure."""
        return """
        Analyze this data and return a JSON with:
        - summary: at least 10 characters
        - key_points: non-empty list
        - sentiment: positive, negative, or neutral

        Data: {data}
        """

# Initialize and use

analyzer = DataAnalyzer(client=client, default_model="gpt-4")
result = analyzer.run("Sales increased by 25% this quarter")
print(f"Sentiment: {result.sentiment}")
print(f"Key Points: {result.key_points}")
```

See our [documentation](https://igorbenav.github.io/clientai/) for more examples, including:

- Custom workflow agents with multiple steps
- Complex tool integration and selection
- Advanced usage patterns and best practices

## Design Philosophy

The ClientAI Agent module is built on four core principles:

1. **Prompt-Centric Design**: Prompts are explicit, debuggable, and transparent. What you see is what is sent to the model.

2. **Customization First**: Every component is designed to be extended or overridden. Create custom steps, tool selectors, or entirely new workflow patterns.

3. **Zero Lock-In**: Start with high-level components and drop down to lower levels as needed. You can:
    - Extend `Agent` for custom behavior
    - Use individual components directly
    - Gradually replace parts with your own implementation
    - Or migrate away entirely - no lock-in

## Requirements

- **Python:** Version 3.9 or newer
- **Dependencies:** Core package has minimal dependencies. Provider-specific packages are optional.

## Contributing

Contributions are welcome! Please see our [Contributing Guidelines](CONTRIBUTING.md) for more information.

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Contact

Igor Magalhaes – [@igormagalhaesr](https://twitter.com/igormagalhaesr) – igormagalhaesr@gmail.com
[github.com/igorbenav](https://github.com/igorbenav/)
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "clientai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "ai, agents, llm, nlp, language-model, ai-agents",
    "author": "Igor Benav",
    "author_email": "igor.magalhaes.r@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/99/8b/8b299e3b8ae27122d07016fb4cbe8511a45e749dd959050f096943403f34/clientai-0.5.0.tar.gz",
    "platform": null,
    "description": "# ClientAI\n\n<p align=\"center\">\n  <a href=\"https://igorbenav.github.io/clientai/\">\n    <img src=\"assets/ClientAI.png\" alt=\"ClientAI logo\" width=\"45%\" height=\"auto\">\n  </a>\n</p>\n\n<p align=\"center\">\n  <i>A unified client for AI providers with built-in agent support.</i>\n</p>\n\n<p align=\"center\">\n<a href=\"https://github.com/igorbenav/clientai/actions/workflows/tests.yml\">\n  <img src=\"https://github.com/igorbenav/clientai/actions/workflows/tests.yml/badge.svg\" alt=\"Tests\"/>\n</a>\n<a href=\"https://pypi.org/project/clientai/\">\n  <img src=\"https://img.shields.io/pypi/v/clientai?color=%2334D058&label=pypi%20package\" alt=\"PyPi Version\"/>\n</a>\n<a href=\"https://pypi.org/project/clientai/\">\n  <img src=\"https://img.shields.io/pypi/pyversions/clientai.svg?color=%2334D058\" alt=\"Supported Python Versions\"/>\n</a>\n</p>\n\n---\n\n<b>ClientAI</b> is a Python package that provides a unified framework for building AI applications, from direct provider interactions to transparent LLM-powered agents, with seamless support for OpenAI, Replicate, Groq and Ollama.\n\n**Documentation**: [igorbenav.github.io/clientai/](https://igorbenav.github.io/clientai/)\n\n---\n\n## Features\n\n- **Unified Interface**: Consistent methods across multiple AI providers (OpenAI, Replicate, Groq, Ollama).\n- **Streaming Support**: Real-time response streaming and chat capabilities.\n- **Intelligent Agents**: Framework for building transparent, multi-step LLM workflows with tool integration.\n- **Output Validation**: Built-in validation system for ensuring structured, reliable outputs from each step.\n- **Modular Design**: Use components independently, from simple provider wrappers to complete agent systems.\n- **Type Safety**: Comprehensive type hints for better development experience.\n\n## Installing\n\nTo install ClientAI with all providers, run:\n\n```sh\npip install \"clientai[all]\"\n```\n\nOr, if you prefer to install only specific providers:\n\n```sh\npip install \"clientai[openai]\"  # For OpenAI support\npip install \"clientai[replicate]\"  # For Replicate support\npip install \"clientai[ollama]\"  # For Ollama support\npip install \"clientai[groq]\"  # For Groq support\n```\n\n## Quick Start Examples\n\n### Basic Provider Usage\n\n```python\nfrom clientai import ClientAI\n\n# Initialize with OpenAI\nclient = ClientAI('openai', api_key=\"your-openai-key\")\n\n# Generate text\nresponse = client.generate_text(\n    \"Tell me a joke\",\n    model=\"gpt-3.5-turbo\",\n)\nprint(response)\n\n# Chat functionality\nmessages = [\n    {\"role\": \"user\", \"content\": \"What is the capital of France?\"},\n    {\"role\": \"assistant\", \"content\": \"Paris.\"},\n    {\"role\": \"user\", \"content\": \"What is its population?\"}\n]\n\nresponse = client.chat(\n    messages,\n    model=\"gpt-3.5-turbo\",\n)\nprint(response)\n```\n\n### Quick-Start Agent\n\n```python\nfrom clientai import client\nfrom clientai.agent import create_agent, tool\n\n@tool(name=\"calculator\")\ndef calculate_average(numbers: list[float]) -> float:\n    \"\"\"Calculate the arithmetic mean of a list of numbers.\"\"\"\n    return sum(numbers) / len(numbers)\n\nanalyzer = create_agent(\n    client=client(\"groq\", api_key=\"your-groq-key\"),\n    role=\"analyzer\", \n    system_prompt=\"You are a helpful data analysis assistant.\",\n    model=\"llama-3.2-3b-preview\",\n    tools=[calculate_average]\n)\n\nresult = analyzer.run(\"Calculate the average of these numbers: [1000, 1200, 950, 1100]\")\nprint(result)\n```\n\n### 3. Custom Agent with Validation\n\nFor guaranteed output structure and type safety:\n\n```python\nfrom clientai.agent import Agent, think\nfrom pydantic import BaseModel, Field\nfrom typing import List\n\nclass Analysis(BaseModel):\n    summary: str = Field(min_length=10)\n    key_points: List[str] = Field(min_items=1)\n    sentiment: str = Field(pattern=\"^(positive|negative|neutral)$\")\n\nclass DataAnalyzer(Agent):\n    @think(\n        name=\"analyze\",\n        json_output=True,  # Enable JSON formatting\n    )\n\n    def analyze_data(self, data: str) -> Analysis: # Enable validation\n        \"\"\"Analyze data with validated output structure.\"\"\"\n        return \"\"\"\n        Analyze this data and return a JSON with:\n        - summary: at least 10 characters\n        - key_points: non-empty list\n        - sentiment: positive, negative, or neutral\n\n        Data: {data}\n        \"\"\"\n\n# Initialize and use\n\nanalyzer = DataAnalyzer(client=client, default_model=\"gpt-4\")\nresult = analyzer.run(\"Sales increased by 25% this quarter\")\nprint(f\"Sentiment: {result.sentiment}\")\nprint(f\"Key Points: {result.key_points}\")\n```\n\nSee our [documentation](https://igorbenav.github.io/clientai/) for more examples, including:\n\n- Custom workflow agents with multiple steps\n- Complex tool integration and selection\n- Advanced usage patterns and best practices\n\n## Design Philosophy\n\nThe ClientAI Agent module is built on four core principles:\n\n1. **Prompt-Centric Design**: Prompts are explicit, debuggable, and transparent. What you see is what is sent to the model.\n\n2. **Customization First**: Every component is designed to be extended or overridden. Create custom steps, tool selectors, or entirely new workflow patterns.\n\n3. **Zero Lock-In**: Start with high-level components and drop down to lower levels as needed. You can:\n    - Extend `Agent` for custom behavior\n    - Use individual components directly\n    - Gradually replace parts with your own implementation\n    - Or migrate away entirely - no lock-in\n\n## Requirements\n\n- **Python:** Version 3.9 or newer\n- **Dependencies:** Core package has minimal dependencies. Provider-specific packages are optional.\n\n## Contributing\n\nContributions are welcome! Please see our [Contributing Guidelines](CONTRIBUTING.md) for more information.\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## Contact\n\nIgor Magalhaes \u2013 [@igormagalhaesr](https://twitter.com/igormagalhaesr) \u2013 igormagalhaesr@gmail.com\n[github.com/igorbenav](https://github.com/igorbenav/)",
    "bugtrack_url": null,
    "license": null,
    "summary": "A unified client for AI providers with built-in agent support.",
    "version": "0.5.0",
    "project_urls": null,
    "split_keywords": [
        "ai",
        " agents",
        " llm",
        " nlp",
        " language-model",
        " ai-agents"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b36b55fe1f755b7373c189b4815f71d269cea3e841e749b5f7025c9ea9153f06",
                "md5": "785b748d6969550a2aa1391d7ec1e3b3",
                "sha256": "8b6abdbaddb5a312dd1ea725988c4394aac64c32459b6f078c441caf3299c8b0"
            },
            "downloads": -1,
            "filename": "clientai-0.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "785b748d6969550a2aa1391d7ec1e3b3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 111992,
            "upload_time": "2024-12-29T06:07:50",
            "upload_time_iso_8601": "2024-12-29T06:07:50.115534Z",
            "url": "https://files.pythonhosted.org/packages/b3/6b/55fe1f755b7373c189b4815f71d269cea3e841e749b5f7025c9ea9153f06/clientai-0.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "998b8b299e3b8ae27122d07016fb4cbe8511a45e749dd959050f096943403f34",
                "md5": "87ce3095a007b72c75f94c3050c98f95",
                "sha256": "bb445fcefc2cabbfe0715187d936670e5e1eb155d23c1f7834231ff92338753f"
            },
            "downloads": -1,
            "filename": "clientai-0.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "87ce3095a007b72c75f94c3050c98f95",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 85503,
            "upload_time": "2024-12-29T06:07:53",
            "upload_time_iso_8601": "2024-12-29T06:07:53.637465Z",
            "url": "https://files.pythonhosted.org/packages/99/8b/8b299e3b8ae27122d07016fb4cbe8511a45e749dd959050f096943403f34/clientai-0.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-29 06:07:53",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "clientai"
}
        
Elapsed time: 0.41331s