cmdstancache


Namecmdstancache JSON
Version 1.2.2 PyPI version JSON
download
home_pagehttps://github.com/JohannesBuchner/CmdStanCache
SummarySmart cache for Stan models and runs
upload_time2023-03-27 19:32:02
maintainer
docs_urlNone
authorJohannes Buchner
requires_python>3.0, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*
licenseGPL
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            
CmdStanCache
=============

Quicker model iterations and enhanced productivity for Stan MCMC by

* caching model compilation in a smart way
* caching sampling results in a smart way

No waiting for the resampling the same model with the same data.

Install 
-------

First install `CmdStanPy <https://cmdstanpy.readthedocs.io/>`_ and
CmdStan and make sure it works.

::

	$ pip install cmdstancache

Usage
-----
::

	model = """
	data {
	  int N;
	}
	parameters {
	  real<lower=-10.0, upper=10.0> x[N];
	}
	model {
	  for (i in 1:N-1) {
		 target += -2 * (100 * square(x[i+1] - square(x[i])) + square(1 - x[i]));
	  }
	}
	"""
	data = dict(N=2)

	import cmdstancache

	stan_variables, method_variables = cmdstancache.run_stan(
		model,
		data=data, 
		# any other sample() parameters go here
		seed=42
	)

**Now comes the trick**:

* If you run this code twice, the second time the stored result is read.

* If you add or modify a code comment, the same result is returned without having to rerun.

.. image:: https://coveralls.io/repos/github/JohannesBuchner/CmdStanCache/badge.svg?branch=main
	:target: https://coveralls.io/github/JohannesBuchner/CmdStanCache?branch=main
.. image:: https://github.com/JohannesBuchner/CmdStanCache/actions/workflows/testing.yml/badge.svg
	:target: https://github.com/JohannesBuchner/CmdStanCache/actions/workflows/testing.yml
.. image:: https://img.shields.io/pypi/v/cmdstancache.svg
        :target: https://pypi.python.org/pypi/cmdstancache


How it works
-------------

cmdstancache keeps a cache of code and data that has previously been used for MCMC sampling.
If it already has the results, it returns it from the cache.

Here are the details:

1. The code is normalised (stripped of comments and indents)
2. A hash of the normalised code is computed
3. The model code is stored in ~/.stan_cache/<codehash>.stan
4. The model is compiled, if it is not already there
5. The data are sorted by key, exported to json, and a hash computed
6. The data are stored in ~/.stan_cache/<datahash>.json
7. cmdstanpy MCMC is run with code=<codehash>.stan and data=<datahash>.json
8. fit.stan_variables() and fit.method_variables() are returned
9. joblib memoizes steps 7 and 8, avoiding resampling when the same data and code hash are seen.


Plotting
--------

Make a quick corner plots of only the scalar model variables::

	cmdstancache.plot_corner(stan_variables)

In case some chains are stuck, and you want to remove their samples for plotting::

	cleaned_variables = remove_stuck_chains(stan_variables, method_variables)
	plot = plot_corner(cleaned_variables)

Since this is optional, the dependency of corner is pulled in if installed with::

	$ pip install cmdstancache[plot]

Contributors
-------------

* @JohannesBuchner

Contributions are welcome.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/JohannesBuchner/CmdStanCache",
    "name": "cmdstancache",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">3.0, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
    "maintainer_email": "",
    "keywords": "",
    "author": "Johannes Buchner",
    "author_email": "johannes.buchner.acad@gmx.com",
    "download_url": "https://files.pythonhosted.org/packages/dd/6b/31630564a7ec16d6b3c53745a411a8755188fea9e6a385048bdd6bb2bfc2/cmdstancache-1.2.2.tar.gz",
    "platform": null,
    "description": "\nCmdStanCache\n=============\n\nQuicker model iterations and enhanced productivity for Stan MCMC by\n\n* caching model compilation in a smart way\n* caching sampling results in a smart way\n\nNo waiting for the resampling the same model with the same data.\n\nInstall \n-------\n\nFirst install `CmdStanPy <https://cmdstanpy.readthedocs.io/>`_ and\nCmdStan and make sure it works.\n\n::\n\n\t$ pip install cmdstancache\n\nUsage\n-----\n::\n\n\tmodel = \"\"\"\n\tdata {\n\t  int N;\n\t}\n\tparameters {\n\t  real<lower=-10.0, upper=10.0> x[N];\n\t}\n\tmodel {\n\t  for (i in 1:N-1) {\n\t\t target += -2 * (100 * square(x[i+1] - square(x[i])) + square(1 - x[i]));\n\t  }\n\t}\n\t\"\"\"\n\tdata = dict(N=2)\n\n\timport cmdstancache\n\n\tstan_variables, method_variables = cmdstancache.run_stan(\n\t\tmodel,\n\t\tdata=data, \n\t\t# any other sample() parameters go here\n\t\tseed=42\n\t)\n\n**Now comes the trick**:\n\n* If you run this code twice, the second time the stored result is read.\n\n* If you add or modify a code comment, the same result is returned without having to rerun.\n\n.. image:: https://coveralls.io/repos/github/JohannesBuchner/CmdStanCache/badge.svg?branch=main\n\t:target: https://coveralls.io/github/JohannesBuchner/CmdStanCache?branch=main\n.. image:: https://github.com/JohannesBuchner/CmdStanCache/actions/workflows/testing.yml/badge.svg\n\t:target: https://github.com/JohannesBuchner/CmdStanCache/actions/workflows/testing.yml\n.. image:: https://img.shields.io/pypi/v/cmdstancache.svg\n        :target: https://pypi.python.org/pypi/cmdstancache\n\n\nHow it works\n-------------\n\ncmdstancache keeps a cache of code and data that has previously been used for MCMC sampling.\nIf it already has the results, it returns it from the cache.\n\nHere are the details:\n\n1. The code is normalised (stripped of comments and indents)\n2. A hash of the normalised code is computed\n3. The model code is stored in ~/.stan_cache/<codehash>.stan\n4. The model is compiled, if it is not already there\n5. The data are sorted by key, exported to json, and a hash computed\n6. The data are stored in ~/.stan_cache/<datahash>.json\n7. cmdstanpy MCMC is run with code=<codehash>.stan and data=<datahash>.json\n8. fit.stan_variables() and fit.method_variables() are returned\n9. joblib memoizes steps 7 and 8, avoiding resampling when the same data and code hash are seen.\n\n\nPlotting\n--------\n\nMake a quick corner plots of only the scalar model variables::\n\n\tcmdstancache.plot_corner(stan_variables)\n\nIn case some chains are stuck, and you want to remove their samples for plotting::\n\n\tcleaned_variables = remove_stuck_chains(stan_variables, method_variables)\n\tplot = plot_corner(cleaned_variables)\n\nSince this is optional, the dependency of corner is pulled in if installed with::\n\n\t$ pip install cmdstancache[plot]\n\nContributors\n-------------\n\n* @JohannesBuchner\n\nContributions are welcome.\n\n\n",
    "bugtrack_url": null,
    "license": "GPL",
    "summary": "Smart cache for Stan models and runs",
    "version": "1.2.2",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dd6b31630564a7ec16d6b3c53745a411a8755188fea9e6a385048bdd6bb2bfc2",
                "md5": "e356e67d60673b98d3a4b3161a62b6a1",
                "sha256": "0ec885f01df441b5f16b7ef1c14547b1f44a2e9c98cf94655b0563402dc0099b"
            },
            "downloads": -1,
            "filename": "cmdstancache-1.2.2.tar.gz",
            "has_sig": true,
            "md5_digest": "e356e67d60673b98d3a4b3161a62b6a1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">3.0, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*",
            "size": 18066,
            "upload_time": "2023-03-27T19:32:02",
            "upload_time_iso_8601": "2023-03-27T19:32:02.722635Z",
            "url": "https://files.pythonhosted.org/packages/dd/6b/31630564a7ec16d6b3c53745a411a8755188fea9e6a385048bdd6bb2bfc2/cmdstancache-1.2.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-27 19:32:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "JohannesBuchner",
    "github_project": "CmdStanCache",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "lcname": "cmdstancache"
}
        
Elapsed time: 0.06424s