cmind


Namecmind JSON
Version 4.1.1 PyPI version JSON
download
home_pageNone
SummaryCommon Metadata eXchange framework (CMX) and Collective Mind automation framework (CM)
upload_time2025-02-17 10:40:36
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseApache 2.0
keywords cmind cm cmx cmx-mlcflow cmx-mlcr common metadata exchange collective mind automation portability reusability mlops devops vmlops api cli
VCS
bugtrack_url
requirements cmind pyyaml requests setuptools giturlparse
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI version](https://badge.fury.io/py/cmind.svg)](https://pepy.tech/project/cmind)
[![Python Version](https://img.shields.io/badge/python-3+-blue.svg)](https://github.com/mlcommons/ck/tree/master/cm/cmind)
[![License](https://img.shields.io/badge/License-Apache%202.0-green)](LICENSE.md)
[![Downloads](https://static.pepy.tech/badge/cmind)](https://pepy.tech/project/cmind)
[![arXiv](https://img.shields.io/badge/arXiv-2406.16791-b31b1b.svg)](https://arxiv.org/abs/2406.16791)

# Collective Mind workflow automation framework (MLCommons CM)

This Python package contains 2 front-ends:
* [Collective Mind eXtension or Common Metadata eXchange (CMX, 2024+)](https://github.com/mlcommons/ck/blob/master/cm/README.CMX.md)
* [Legacy Collective Mind (CM, 2021-2024)](https://github.com/mlcommons/ck/blob/master/cm/README.CM.md)

## License

[Apache 2.0](LICENSE.md)

## Copyright

Copyright (c) 2021-2025 MLCommons

Grigori Fursin, the cTuning foundation and OctoML donated this project to MLCommons to benefit everyone.

Copyright (c) 2014-2021 cTuning foundation

## Author

* [Grigori Fursin](https://cKnowledge.org/gfursin)

## Maintainers

* CM, CM4MLOps and MLPerf automations: [MLCommons infra WG](https://mlcommons.org)
* CMX (the next generation of CM): [Grigori Fursin](https://cKnowledge.org/gfursin)

## Concepts

To learn more about the concepts and motivation behind this project, please explore the following articles and presentations:

* HPCA'25 article "MLPerf Power: Benchmarking the Energy Efficiency of Machine Learning Systems from Microwatts to Megawatts for Sustainable AI": [ [Arxiv](https://arxiv.org/abs/2410.12032) ], [ [tutorial to reproduce results using CM/CMX](https://github.com/aryatschand/MLPerf-Power-HPCA-2025/blob/main/measurement_tutorial.md) ]
* "Enabling more efficient and cost-effective AI/ML systems with Collective Mind, virtualized MLOps, MLPerf, Collective Knowledge Playground and reproducible optimization tournaments": [ [ArXiv](https://arxiv.org/abs/2406.16791) ]
* ACM REP'23 keynote about the MLCommons CM automation framework: [ [slides](https://doi.org/10.5281/zenodo.8105339) ] 
* ACM TechTalk'21 about Collective Knowledge project: [ [YouTube](https://www.youtube.com/watch?v=7zpeIVwICa4) ] [ [slides](https://learning.acm.org/binaries/content/assets/leaning-center/webinar-slides/2021/grigorifursin_techtalk_slides.pdf) ]
* Journal of Royal Society'20: [ [paper](https://royalsocietypublishing.org/doi/10.1098/rsta.2020.0211) ]

## Citation

If you found the CM, CMX and MLPerf automations helpful, kindly reference this article:
[ [ArXiv](https://arxiv.org/abs/2406.16791) ], [ [BibTex](https://github.com/mlcommons/ck/blob/master/citation.bib) ].

You are welcome to contact the [author](https://cKnowledge.org/gfursin) to discuss long-term plans and potential collaboration.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "cmind",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "Grigori Fursin <grigori.fursin@ctuning.org>",
    "keywords": "cmind, cm, cmx, cmx-mlcflow, cmx-mlcr, common metadata exchange, collective mind, automation, portability, reusability, mlops, devops, vmlops, api, cli",
    "author": null,
    "author_email": "Grigori Fursin <grigori.fursin@ctuning.org>",
    "download_url": "https://files.pythonhosted.org/packages/a8/42/02f183818a4d3731d1a447a66fcf0777be994a041eacba8958a80b5639f9/cmind-4.1.1.tar.gz",
    "platform": null,
    "description": "[![PyPI version](https://badge.fury.io/py/cmind.svg)](https://pepy.tech/project/cmind)\r\n[![Python Version](https://img.shields.io/badge/python-3+-blue.svg)](https://github.com/mlcommons/ck/tree/master/cm/cmind)\r\n[![License](https://img.shields.io/badge/License-Apache%202.0-green)](LICENSE.md)\r\n[![Downloads](https://static.pepy.tech/badge/cmind)](https://pepy.tech/project/cmind)\r\n[![arXiv](https://img.shields.io/badge/arXiv-2406.16791-b31b1b.svg)](https://arxiv.org/abs/2406.16791)\r\n\r\n# Collective Mind workflow automation framework (MLCommons CM)\r\n\r\nThis Python package contains 2 front-ends:\r\n* [Collective Mind eXtension or Common Metadata eXchange (CMX, 2024+)](https://github.com/mlcommons/ck/blob/master/cm/README.CMX.md)\r\n* [Legacy Collective Mind (CM, 2021-2024)](https://github.com/mlcommons/ck/blob/master/cm/README.CM.md)\r\n\r\n## License\r\n\r\n[Apache 2.0](LICENSE.md)\r\n\r\n## Copyright\r\n\r\nCopyright (c) 2021-2025 MLCommons\r\n\r\nGrigori Fursin, the cTuning foundation and OctoML donated this project to MLCommons to benefit everyone.\r\n\r\nCopyright (c) 2014-2021 cTuning foundation\r\n\r\n## Author\r\n\r\n* [Grigori Fursin](https://cKnowledge.org/gfursin)\r\n\r\n## Maintainers\r\n\r\n* CM, CM4MLOps and MLPerf automations: [MLCommons infra WG](https://mlcommons.org)\r\n* CMX (the next generation of CM): [Grigori Fursin](https://cKnowledge.org/gfursin)\r\n\r\n## Concepts\r\n\r\nTo learn more about the concepts and motivation behind this project, please explore the following articles and presentations:\r\n\r\n* HPCA'25 article \"MLPerf Power: Benchmarking the Energy Efficiency of Machine Learning Systems from Microwatts to Megawatts for Sustainable AI\": [ [Arxiv](https://arxiv.org/abs/2410.12032) ], [ [tutorial to reproduce results using CM/CMX](https://github.com/aryatschand/MLPerf-Power-HPCA-2025/blob/main/measurement_tutorial.md) ]\r\n* \"Enabling more efficient and cost-effective AI/ML systems with Collective Mind, virtualized MLOps, MLPerf, Collective Knowledge Playground and reproducible optimization tournaments\": [ [ArXiv](https://arxiv.org/abs/2406.16791) ]\r\n* ACM REP'23 keynote about the MLCommons CM automation framework: [ [slides](https://doi.org/10.5281/zenodo.8105339) ] \r\n* ACM TechTalk'21 about Collective Knowledge project: [ [YouTube](https://www.youtube.com/watch?v=7zpeIVwICa4) ] [ [slides](https://learning.acm.org/binaries/content/assets/leaning-center/webinar-slides/2021/grigorifursin_techtalk_slides.pdf) ]\r\n* Journal of Royal Society'20: [ [paper](https://royalsocietypublishing.org/doi/10.1098/rsta.2020.0211) ]\r\n\r\n## Citation\r\n\r\nIf you found the CM, CMX and MLPerf automations helpful, kindly reference this article:\r\n[ [ArXiv](https://arxiv.org/abs/2406.16791) ], [ [BibTex](https://github.com/mlcommons/ck/blob/master/citation.bib) ].\r\n\r\nYou are welcome to contact the [author](https://cKnowledge.org/gfursin) to discuss long-term plans and potential collaboration.\r\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Common Metadata eXchange framework (CMX) and Collective Mind automation framework (CM)",
    "version": "4.1.1",
    "project_urls": {
        "Changelog": "https://github.com/mlcommons/ck/blob/master/cm/CHANGES.md",
        "Documentation": "https://docs.mlcommons.org/ck",
        "Homepage": "https://cKnowledge.org",
        "Issues": "https://github.com/mlcommons/ck/issues",
        "Repository": "https://github.com/mlcommons/ck/tree/master/cm"
    },
    "split_keywords": [
        "cmind",
        " cm",
        " cmx",
        " cmx-mlcflow",
        " cmx-mlcr",
        " common metadata exchange",
        " collective mind",
        " automation",
        " portability",
        " reusability",
        " mlops",
        " devops",
        " vmlops",
        " api",
        " cli"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "14f68635a56db05b95d711c6eadaecd8ab5f5d07598c090bf8ffea09898e97d5",
                "md5": "635b9a9964f77d680acb7c484e04e81b",
                "sha256": "5f545b8a4a7b00d9b528249e9453cc84970c514d6edfafbdb30190cfa0ed8a96"
            },
            "downloads": -1,
            "filename": "cmind-4.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "635b9a9964f77d680acb7c484e04e81b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 84488,
            "upload_time": "2025-02-17T10:40:35",
            "upload_time_iso_8601": "2025-02-17T10:40:35.041821Z",
            "url": "https://files.pythonhosted.org/packages/14/f6/8635a56db05b95d711c6eadaecd8ab5f5d07598c090bf8ffea09898e97d5/cmind-4.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a84202f183818a4d3731d1a447a66fcf0777be994a041eacba8958a80b5639f9",
                "md5": "c668a4c270e0c58c0da45695f56d2a17",
                "sha256": "30746985dc8e75042d425f0aa35379256bb050b98ce4e6653762a76527a60aa6"
            },
            "downloads": -1,
            "filename": "cmind-4.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "c668a4c270e0c58c0da45695f56d2a17",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 77019,
            "upload_time": "2025-02-17T10:40:36",
            "upload_time_iso_8601": "2025-02-17T10:40:36.897207Z",
            "url": "https://files.pythonhosted.org/packages/a8/42/02f183818a4d3731d1a447a66fcf0777be994a041eacba8958a80b5639f9/cmind-4.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-17 10:40:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mlcommons",
    "github_project": "ck",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "cmind",
            "specs": [
                [
                    ">=",
                    "3.5.2"
                ]
            ]
        },
        {
            "name": "pyyaml",
            "specs": []
        },
        {
            "name": "requests",
            "specs": []
        },
        {
            "name": "setuptools",
            "specs": []
        },
        {
            "name": "giturlparse",
            "specs": []
        }
    ],
    "lcname": "cmind"
}
        
Elapsed time: 3.78152s