counterplots


Namecounterplots JSON
Version 0.0.7 PyPI version JSON
download
home_pagehttps://github.com/ADMAntwerp/CounterPlots
SummaryPlotting tool for counterfactual explanations
upload_time2023-06-10 20:47:57
maintainer
docs_urlNone
authorRaphael Mazzine Barbosa de Oliveira, Bjorge Meulemeester
requires_python
licenseMIT
keywords counterfactual explanations visualization plotting explainable artificial intelligence xai machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <img src="https://raw.githubusercontent.com/ADMAntwerp/CounterPlots/main/_static/counterplots_logo.svg"><br>

--------------------------------------

CounterPlots: Plotting tool for counterfactuals
=======================================

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![example workflow](https://github.com/ADMAntwerp/CounterPlots/actions/workflows/deployment.yml/badge.svg)](https://github.com/ADMAntwerp/CounterPlots/actions)
[![Code Coverage](https://codecov.io/gh/rmazzine/counterplotcoverage/branch/main/graph/badge.svg?token=TQYJSGEMP1)](https://codecov.io/gh/rmazzine/counterplotcoverage)
[![Known Vulnerabilities](https://snyk.io/test/github/ADMAntwerp/CounterPlots/badge.svg)](https://snyk.io/test/github/ADMAntwerp/CounterPlots)

Counterplots is a Python package that allows you to plot counterfactuals with easy integration with any counterfactual generation algorithm.

## Plot examples

### Greedy Plot

The greedy plot shows the greediest (feature change with the highest impact towards the opposite class) path from the factual instance until it reaches the counterfactual.

<img src="https://raw.githubusercontent.com/ADMAntwerp/CounterPlots/main/_static/counterplots_example_greedy.png">

### CounterShapley Plot

This chart shows each counterfactual feature change contribution to the counterfactual prediction. It uses Shapley values to calculate the contribution of each feature change.

<img src="https://raw.githubusercontent.com/ADMAntwerp/CounterPlots/main/_static/counterplots_example_countershapley.png">

### Constellation Plot

This chart shows the prediction score change for all possible feature change combinations.

<img src="https://raw.githubusercontent.com/ADMAntwerp/CounterPlots/main/_static/counterplots_example_constellation.png">

## Requirements
CounterPlots requires Python 3.8 or higher.

## Installation
With pip:
```bash
pip install counterplots
```

## Usage
To use CounterPlots, you just need the machine learning model predictor, and the factual and counterfactual points.
The example below uses a simple mock model:
```python
from counterplots import CreatePlot
import numpy as np

# Simple mock model for the predict_proba function which returns a probability for each input instance
def mock_predict_proba(data):
    out = []
    for x in data:
        if list(x) == [0.0, 0.0, 0.0]:
            out.append(0.0)
        elif list(x) == [1.0, 0.0, 0.0]:
            out.append(0.44)
        elif list(x) == [0.0, 1.0, 0.0]:
            out.append(0.4)
        elif list(x) == [0.0, 0.0, 1.0]:
            out.append(0.2)
        elif list(x) == [1.0, 1.0, 0.0]:
            out.append(0.3)
        elif list(x) == [0.0, 1.0, 1.0]:
            out.append(0.25)
        elif list(x) == [1.0, 0.0, 1.0]:
            out.append(0.4)
        elif list(x) == [1.0, 1.0, 1.0]:
            out.append(1.0)
    return np.array(out)

# Factual Instance
factual = np.array([0, 0, 0])
# Counterfactual Instance
cf = np.array([1, 1, 1])

# Create the plot object
cf_plots = CreatePlot(
    factual,
    cf,
    mock_predict_proba)

# Create the greedy plot
cf_plots.greedy('greedy_plot.png')
# Create the countershapley plot
cf_plots.countershapley('countershapley_plot.png')
# Create the constellation plot
cf_plots.constellation('constellation_plot.png')

# Print the countershapley values
print(cf_plots.countershapley_values())
```

In case you want to add custom names to the features, use the optional argument `feature_names`:
```python
cf_plots = CreatePlot(
    factual,
    cf,
    mock_predict_proba,
    feature_names=['feature1', 'feature2', 'feature3'])
```

In case you want to add custom labels to the factual and counterfactual points, use the optional argument `class_names`:
```python
cf_plots = CreatePlot(
    factual,
    cf,
    mock_predict_proba,
    class_names=['Factual', 'Counterfactual'])
```

## Using with Scikit-Learn

CounterPlots can be used with any machine learning model that has a `predict_proba` function. For example, with Scikit-Learn:
<details>

```python
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris

from counterplots import CreatePlot

iris = load_iris()

X = iris.data
y = [0 if l == 0 else 1 for l in iris.target] # Makes it a binary classification problem

clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X, y)

preds = clf.predict(X)

# For the factual point, takes an instance with 0 classification
factual = X[np.argwhere(preds == 0)[0]][0]
# For the counterfactual point, takes an instance with 1 classification
cf = X[np.argwhere(preds == 1)[0]][0]

cf_plots = CreatePlot(
    factual,
    cf,
    clf.predict_proba,
    feature_names=iris.feature_names,
    class_names={0: 'Setosa', 1: 'Non-Setosa'}
)


# Create the greedy plot
cf_plots.greedy('iris_greedy_plot.png')
# Create the countershapley plot
cf_plots.countershapley('iris_countershapley_plot.png')
# Create the constellation plot
cf_plots.constellation('iris_constellation_plot.png')

# Print the countershapley values
print(cf_plots.countershapley_values())
```
</details>

## Citation
If you use CounterPlots in your research, please cite the following paper:
```bibtex
```
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ADMAntwerp/CounterPlots",
    "name": "counterplots",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "Counterfactual Explanations,Visualization,Plotting,Explainable Artificial Intelligence,XAI,Machine Learning",
    "author": "Raphael Mazzine Barbosa de Oliveira, Bjorge Meulemeester",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/d7/10/4350dcb4bbe49c50901e4427eb0ca98f1e322539d5d91af44cffc108fc04/counterplots-0.0.7.tar.gz",
    "platform": null,
    "description": "<img src=\"https://raw.githubusercontent.com/ADMAntwerp/CounterPlots/main/_static/counterplots_logo.svg\"><br>\n\n--------------------------------------\n\nCounterPlots: Plotting tool for counterfactuals\n=======================================\n\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![example workflow](https://github.com/ADMAntwerp/CounterPlots/actions/workflows/deployment.yml/badge.svg)](https://github.com/ADMAntwerp/CounterPlots/actions)\n[![Code Coverage](https://codecov.io/gh/rmazzine/counterplotcoverage/branch/main/graph/badge.svg?token=TQYJSGEMP1)](https://codecov.io/gh/rmazzine/counterplotcoverage)\n[![Known Vulnerabilities](https://snyk.io/test/github/ADMAntwerp/CounterPlots/badge.svg)](https://snyk.io/test/github/ADMAntwerp/CounterPlots)\n\nCounterplots is a Python package that allows you to plot counterfactuals with easy integration with any counterfactual generation algorithm.\n\n## Plot examples\n\n### Greedy Plot\n\nThe greedy plot shows the greediest (feature change with the highest impact towards the opposite class) path from the factual instance until it reaches the counterfactual.\n\n<img src=\"https://raw.githubusercontent.com/ADMAntwerp/CounterPlots/main/_static/counterplots_example_greedy.png\">\n\n### CounterShapley Plot\n\nThis chart shows each counterfactual feature change contribution to the counterfactual prediction. It uses Shapley values to calculate the contribution of each feature change.\n\n<img src=\"https://raw.githubusercontent.com/ADMAntwerp/CounterPlots/main/_static/counterplots_example_countershapley.png\">\n\n### Constellation Plot\n\nThis chart shows the prediction score change for all possible feature change combinations.\n\n<img src=\"https://raw.githubusercontent.com/ADMAntwerp/CounterPlots/main/_static/counterplots_example_constellation.png\">\n\n## Requirements\nCounterPlots requires Python 3.8 or higher.\n\n## Installation\nWith pip:\n```bash\npip install counterplots\n```\n\n## Usage\nTo use CounterPlots, you just need the machine learning model predictor, and the factual and counterfactual points.\nThe example below uses a simple mock model:\n```python\nfrom counterplots import CreatePlot\nimport numpy as np\n\n# Simple mock model for the predict_proba function which returns a probability for each input instance\ndef mock_predict_proba(data):\n    out = []\n    for x in data:\n        if list(x) == [0.0, 0.0, 0.0]:\n            out.append(0.0)\n        elif list(x) == [1.0, 0.0, 0.0]:\n            out.append(0.44)\n        elif list(x) == [0.0, 1.0, 0.0]:\n            out.append(0.4)\n        elif list(x) == [0.0, 0.0, 1.0]:\n            out.append(0.2)\n        elif list(x) == [1.0, 1.0, 0.0]:\n            out.append(0.3)\n        elif list(x) == [0.0, 1.0, 1.0]:\n            out.append(0.25)\n        elif list(x) == [1.0, 0.0, 1.0]:\n            out.append(0.4)\n        elif list(x) == [1.0, 1.0, 1.0]:\n            out.append(1.0)\n    return np.array(out)\n\n# Factual Instance\nfactual = np.array([0, 0, 0])\n# Counterfactual Instance\ncf = np.array([1, 1, 1])\n\n# Create the plot object\ncf_plots = CreatePlot(\n    factual,\n    cf,\n    mock_predict_proba)\n\n# Create the greedy plot\ncf_plots.greedy('greedy_plot.png')\n# Create the countershapley plot\ncf_plots.countershapley('countershapley_plot.png')\n# Create the constellation plot\ncf_plots.constellation('constellation_plot.png')\n\n# Print the countershapley values\nprint(cf_plots.countershapley_values())\n```\n\nIn case you want to add custom names to the features, use the optional argument `feature_names`:\n```python\ncf_plots = CreatePlot(\n    factual,\n    cf,\n    mock_predict_proba,\n    feature_names=['feature1', 'feature2', 'feature3'])\n```\n\nIn case you want to add custom labels to the factual and counterfactual points, use the optional argument `class_names`:\n```python\ncf_plots = CreatePlot(\n    factual,\n    cf,\n    mock_predict_proba,\n    class_names=['Factual', 'Counterfactual'])\n```\n\n## Using with Scikit-Learn\n\nCounterPlots can be used with any machine learning model that has a `predict_proba` function. For example, with Scikit-Learn:\n<details>\n\n```python\nimport numpy as np\nfrom sklearn.ensemble import RandomForestClassifier\nfrom sklearn.datasets import load_iris\n\nfrom counterplots import CreatePlot\n\niris = load_iris()\n\nX = iris.data\ny = [0 if l == 0 else 1 for l in iris.target] # Makes it a binary classification problem\n\nclf = RandomForestClassifier(max_depth=2, random_state=0)\nclf.fit(X, y)\n\npreds = clf.predict(X)\n\n# For the factual point, takes an instance with 0 classification\nfactual = X[np.argwhere(preds == 0)[0]][0]\n# For the counterfactual point, takes an instance with 1 classification\ncf = X[np.argwhere(preds == 1)[0]][0]\n\ncf_plots = CreatePlot(\n    factual,\n    cf,\n    clf.predict_proba,\n    feature_names=iris.feature_names,\n    class_names={0: 'Setosa', 1: 'Non-Setosa'}\n)\n\n\n# Create the greedy plot\ncf_plots.greedy('iris_greedy_plot.png')\n# Create the countershapley plot\ncf_plots.countershapley('iris_countershapley_plot.png')\n# Create the constellation plot\ncf_plots.constellation('iris_constellation_plot.png')\n\n# Print the countershapley values\nprint(cf_plots.countershapley_values())\n```\n</details>\n\n## Citation\nIf you use CounterPlots in your research, please cite the following paper:\n```bibtex\n```",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Plotting tool for counterfactual explanations",
    "version": "0.0.7",
    "project_urls": {
        "Download": "https://pypi.org/project/counterplots/",
        "Homepage": "https://github.com/ADMAntwerp/CounterPlots"
    },
    "split_keywords": [
        "counterfactual explanations",
        "visualization",
        "plotting",
        "explainable artificial intelligence",
        "xai",
        "machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d7104350dcb4bbe49c50901e4427eb0ca98f1e322539d5d91af44cffc108fc04",
                "md5": "3738c3b7e59798b76e67395b805ebe72",
                "sha256": "1cc80ad3d555c762a988cb973e1c880716ce138328f6555534f7c9f4148eecba"
            },
            "downloads": -1,
            "filename": "counterplots-0.0.7.tar.gz",
            "has_sig": false,
            "md5_digest": "3738c3b7e59798b76e67395b805ebe72",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 15948,
            "upload_time": "2023-06-10T20:47:57",
            "upload_time_iso_8601": "2023-06-10T20:47:57.437335Z",
            "url": "https://files.pythonhosted.org/packages/d7/10/4350dcb4bbe49c50901e4427eb0ca98f1e322539d5d91af44cffc108fc04/counterplots-0.0.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-10 20:47:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ADMAntwerp",
    "github_project": "CounterPlots",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "counterplots"
}
        
Elapsed time: 0.11923s