Name | Version | Summary | date |
pnpxai |
0.1.1 |
XAI Recommendation Toolkit |
2024-12-27 03:09:57 |
distance-explainer |
0.4.0 |
XAI method to explain distances in embedded spaces |
2024-11-05 12:24:06 |
dianna |
1.7.0 |
Deep Insight And Neural Network Analysis |
2024-10-30 16:10:28 |
signxai |
1.1.9.2 |
SIGNed explanations: Unveiling relevant features by reducing bias |
2024-10-24 09:41:58 |
lux-explainer |
1.3.2 |
Universal Local Rule-based Explainer |
2024-09-19 10:34:25 |
tsproto |
0.3.0 |
Post-host prototype-based explanations with rules for time-series classifiers |
2024-09-11 11:58:25 |
omnixai-community |
1.3.2.3 |
OmniXAI: An Explainable AI Toolbox |
2024-09-03 11:37:58 |
antakia |
0.4.6 |
AI made Xplainable |
2024-05-13 17:21:50 |
wpdm3333 |
0.1.0 |
Warsztat Praktyka Data Mining |
2024-03-12 23:16:21 |
template-wpdm |
0.1.0 |
Warsztat Praktyka Data Mining |
2024-03-11 10:48:41 |
affinitree |
0.21.1 |
Distillation of piece-wise linear neural networks into decision trees |
2024-03-08 17:05:11 |
milosz7wpdm |
0.1.1 |
Warsztat Praktyka Data Mining |
2024-03-06 17:28:24 |
knac-toolkit |
1.0.2 |
Knowledge Augmented Clustering |
2024-02-29 10:37:49 |
xai-explainer |
0.7.0 |
A package for explaining deep learning models |
2024-02-25 15:40:00 |
slisemap-interactive |
0.6.0 |
Interactive plots for Slisemap using Dash |
2024-02-20 13:41:33 |
easy-explain |
0.5.0 |
A library that helps to explain AI models in a really quick & easy way |
2024-02-12 14:27:32 |
trustyai |
0.5.0 |
Python bindings to the TrustyAI explainability library. |
2024-02-02 13:31:44 |
pyxai |
1.0.12 |
Explaining Machine Learning Classifiers in Python |
2024-02-02 08:49:41 |
multixai |
1.0.0 |
|
2024-01-21 05:59:27 |
hoocs |
0.0.1 |
Occlusion-based explainers for higher-order attributions. |
2024-01-16 13:15:36 |