eazyml-xai


Nameeazyml-xai JSON
Version 0.0.65 PyPI version JSON
download
home_pagehttps://eazyml.com/
Summaryeazyml-xai provides APIs for explainable AI (XAI), offering human-readable explanations, feature importance, and predictive reasoning.
upload_time2025-02-27 15:51:36
maintainerNone
docs_urlNone
authorEazyML
requires_python>=3.7
licenseNone
keywords xai explainable-ai model-explainability predictive-reasoning feature-importance predictive-reasoning explainability-score interpretable-ai local-feature-importance machine-learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## EazyML Responsible-AI: XAI
![Python](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)  ![PyPI package](https://img.shields.io/badge/pypi%20package-0.0.65-brightgreen) ![Code Style](https://img.shields.io/badge/code%20style-black-black)

![EazyML](https://github.com/EazyML/eazyml-docs/raw/refs/heads/master/EazyML_logo.png)

`eazyml-xai` is a python package designed to make machine learning predictions more transparent and interpretable. It provides human-readable explanations for predictions.

### Features
- Gain insights into **local feature importance and global feature impacts**.
- Understand **why a specific prediction was made**.
- Evaluate predictions with **explainability scores**.    

`eazyml-xai` is a key tool for building trust in AI systems by providing clear, actionable explanations.

## Installation
To use the explainable ai, ensure you have Python installed on your system.
### User installation
The easiest way to install EazyML Explainable AI is using pip:
```bash
pip install -U eazyml-xai
```
### Dependencies
This package requires:
- pandas,
- scikit-learn,
- werkzeug,
- Unidecode,
- pydot,
- numpy,
- pyyaml

## Usage
Here's an example of how you can use the APIs from this package.
```python
from eazyml_xai import ez_init, ez_explain

# initialize: setup book-keeping, access_key if required 
_ = ez_init()

response = ez_explain(
                train_data(`DataFrame/str`) = 'train_dataframe/train_data_path',
                outcome(`str`) = 'target',
                test_data(`DataFrame/str`) = 'test_dataframe/test_data_path',
                model(`Bytes/object`) = 'Encripted model_info from ez_build_model response or the trained model'
                options(`dict`) = {
                    "record_number"(`list of integer`): "Specify the record number of test data in the list on which you want to get the explanations"
                    "scaler"(`object`): "Trained scaler object"
                    "preprocessor"(`object`): "Trained preprocessor object"
            }
        )

explanations = response['explanations']
```
You can find more information in the [documentation](https://eazyml.readthedocs.io/en/latest/packages/eazyml_xai.html).


## Useful links, other packages from EazyML family
- [Documentation](https://docs.eazyml.com)
- [Homepage](https://eazyml.com)
- If you have questions or would like to discuss a use case, please contact us [here](https://eazyml.com/trust-in-ai)
- Here are the other packages from EazyML suite:

    - [eazyml-automl](https://pypi.org/project/eazyml-automl/): eazyml-automl provides a suite of APIs for training, optimizing and validating machine learning models with built-in AutoML capabilities, hyperparameter tuning, and cross-validation.
    - [eazyml-data-quality](https://pypi.org/project/eazyml-data-quality/): eazyml-data-quality provides APIs for comprehensive data quality assessment, including bias detection, outlier identification, and drift analysis for both data and models.
    - [eazyml-counterfactual](https://pypi.org/project/eazyml-counterfactual/): eazyml-counterfactual provides APIs for optimal prescriptive analytics, counterfactual explanations, and actionable insights to optimize predictive outcomes to align with your objectives.
    - [eazyml-insight](https://pypi.org/project/eazyml-insight/): eazyml-insight provides APIs to discover patterns, generate insights, and mine rules from your datasets.
    - [eazyml-xai](https://pypi.org/project/eazyml-xai/): eazyml-xai provides APIs for explainable AI (XAI), offering human-readable explanations, feature importance, and predictive reasoning.
    - [eazyml-xai-image](https://pypi.org/project/eazyml-xai-image/): eazyml-xai-image provides APIs for image explainable AI (XAI).

## License
This project is licensed under the [Proprietary License](https://github.com/EazyML/eazyml-docs/blob/master/LICENSE).

---

Maintained by [EazyML](https://eazyml.com)  
© 2025 EazyML. All rights reserved.

            

Raw data

            {
    "_id": null,
    "home_page": "https://eazyml.com/",
    "name": "eazyml-xai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "xai, explainable-ai, model-explainability, predictive-reasoning, feature-importance, predictive-reasoning, explainability-score, interpretable-ai, local-feature-importance, machine-learning",
    "author": "EazyML",
    "author_email": "admin@ipsoftlabs.com",
    "download_url": "https://files.pythonhosted.org/packages/04/b1/75e020ebc28b8546ae7c5801b3e421e4a529be3715f1d25d773b06ffa8d9/eazyml_xai-0.0.65.tar.gz",
    "platform": null,
    "description": "## EazyML Responsible-AI: XAI\r\n![Python](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)  ![PyPI package](https://img.shields.io/badge/pypi%20package-0.0.65-brightgreen) ![Code Style](https://img.shields.io/badge/code%20style-black-black)\r\n\r\n![EazyML](https://github.com/EazyML/eazyml-docs/raw/refs/heads/master/EazyML_logo.png)\r\n\r\n`eazyml-xai` is a python package designed to make machine learning predictions more transparent and interpretable. It provides human-readable explanations for predictions.\r\n\r\n### Features\r\n- Gain insights into **local feature importance and global feature impacts**.\r\n- Understand **why a specific prediction was made**.\r\n- Evaluate predictions with **explainability scores**.    \r\n\r\n`eazyml-xai` is a key tool for building trust in AI systems by providing clear, actionable explanations.\r\n\r\n## Installation\r\nTo use the explainable ai, ensure you have Python installed on your system.\r\n### User installation\r\nThe easiest way to install EazyML Explainable AI is using pip:\r\n```bash\r\npip install -U eazyml-xai\r\n```\r\n### Dependencies\r\nThis package requires:\r\n- pandas,\r\n- scikit-learn,\r\n- werkzeug,\r\n- Unidecode,\r\n- pydot,\r\n- numpy,\r\n- pyyaml\r\n\r\n## Usage\r\nHere's an example of how you can use the APIs from this package.\r\n```python\r\nfrom eazyml_xai import ez_init, ez_explain\r\n\r\n# initialize: setup book-keeping, access_key if required \r\n_ = ez_init()\r\n\r\nresponse = ez_explain(\r\n                train_data(`DataFrame/str`) = 'train_dataframe/train_data_path',\r\n                outcome(`str`) = 'target',\r\n                test_data(`DataFrame/str`) = 'test_dataframe/test_data_path',\r\n                model(`Bytes/object`) = 'Encripted model_info from ez_build_model response or the trained model'\r\n                options(`dict`) = {\r\n                    \"record_number\"(`list of integer`): \"Specify the record number of test data in the list on which you want to get the explanations\"\r\n                    \"scaler\"(`object`): \"Trained scaler object\"\r\n                    \"preprocessor\"(`object`): \"Trained preprocessor object\"\r\n            }\r\n        )\r\n\r\nexplanations = response['explanations']\r\n```\r\nYou can find more information in the [documentation](https://eazyml.readthedocs.io/en/latest/packages/eazyml_xai.html).\r\n\r\n\r\n## Useful links, other packages from EazyML family\r\n- [Documentation](https://docs.eazyml.com)\r\n- [Homepage](https://eazyml.com)\r\n- If you have questions or would like to discuss a use case, please contact us [here](https://eazyml.com/trust-in-ai)\r\n- Here are the other packages from EazyML suite:\r\n\r\n    - [eazyml-automl](https://pypi.org/project/eazyml-automl/): eazyml-automl provides a suite of APIs for training, optimizing and validating machine learning models with built-in AutoML capabilities, hyperparameter tuning, and cross-validation.\r\n    - [eazyml-data-quality](https://pypi.org/project/eazyml-data-quality/): eazyml-data-quality provides APIs for comprehensive data quality assessment, including bias detection, outlier identification, and drift analysis for both data and models.\r\n    - [eazyml-counterfactual](https://pypi.org/project/eazyml-counterfactual/): eazyml-counterfactual provides APIs for optimal prescriptive analytics, counterfactual explanations, and actionable insights to optimize predictive outcomes to align with your objectives.\r\n    - [eazyml-insight](https://pypi.org/project/eazyml-insight/): eazyml-insight provides APIs to discover patterns, generate insights, and mine rules from your datasets.\r\n    - [eazyml-xai](https://pypi.org/project/eazyml-xai/): eazyml-xai provides APIs for explainable AI (XAI), offering human-readable explanations, feature importance, and predictive reasoning.\r\n    - [eazyml-xai-image](https://pypi.org/project/eazyml-xai-image/): eazyml-xai-image provides APIs for image explainable AI (XAI).\r\n\r\n## License\r\nThis project is licensed under the [Proprietary License](https://github.com/EazyML/eazyml-docs/blob/master/LICENSE).\r\n\r\n---\r\n\r\nMaintained by [EazyML](https://eazyml.com)  \r\n\u00c2\u00a9 2025 EazyML. All rights reserved.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "eazyml-xai provides APIs for explainable AI (XAI), offering human-readable explanations, feature importance, and predictive reasoning.",
    "version": "0.0.65",
    "project_urls": {
        "Contact Us": "https://eazyml.com/trust-in-ai",
        "Documentation": "https://docs.eazyml.com/",
        "Homepage": "https://eazyml.com/",
        "eazyml-automl": "https://pypi.org/project/eazyml-automl/",
        "eazyml-counterfactual": "https://pypi.org/project/eazyml-counterfactual/",
        "eazyml-data-quality": "https://pypi.org/project/eazyml-data-quality/",
        "eazyml-insight": "https://pypi.org/project/eazyml-insight/",
        "eazyml-xai": "https://pypi.org/project/eazyml-xai/",
        "eazyml-xai-image": "https://pypi.org/project/eazyml-xai-image/"
    },
    "split_keywords": [
        "xai",
        " explainable-ai",
        " model-explainability",
        " predictive-reasoning",
        " feature-importance",
        " predictive-reasoning",
        " explainability-score",
        " interpretable-ai",
        " local-feature-importance",
        " machine-learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f4e6e5a3612b393522d2e6030bb015ec8d84325489a8dfc949efa3f06d0a881b",
                "md5": "c1dac488cba01a7a0e867d67543b47eb",
                "sha256": "5df5ac707d532a45811105978cf3eb02e25d2ee46d89217405a6b259197c27d4"
            },
            "downloads": -1,
            "filename": "eazyml_xai-0.0.65-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c1dac488cba01a7a0e867d67543b47eb",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.7",
            "size": 32731494,
            "upload_time": "2025-02-27T15:51:24",
            "upload_time_iso_8601": "2025-02-27T15:51:24.664299Z",
            "url": "https://files.pythonhosted.org/packages/f4/e6/e5a3612b393522d2e6030bb015ec8d84325489a8dfc949efa3f06d0a881b/eazyml_xai-0.0.65-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "04b175e020ebc28b8546ae7c5801b3e421e4a529be3715f1d25d773b06ffa8d9",
                "md5": "1c093814da6d1ab55205e582ef402911",
                "sha256": "46e45f72f80db6a401e50457603822ad623c0f9f849720cae35f22d42bb645cd"
            },
            "downloads": -1,
            "filename": "eazyml_xai-0.0.65.tar.gz",
            "has_sig": false,
            "md5_digest": "1c093814da6d1ab55205e582ef402911",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 32156251,
            "upload_time": "2025-02-27T15:51:36",
            "upload_time_iso_8601": "2025-02-27T15:51:36.637944Z",
            "url": "https://files.pythonhosted.org/packages/04/b1/75e020ebc28b8546ae7c5801b3e421e4a529be3715f1d25d773b06ffa8d9/eazyml_xai-0.0.65.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-27 15:51:36",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "eazyml-xai"
}
        
Elapsed time: 0.78774s