cpath


Namecpath JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/pievos101/cpath
SummaryExplainable AI with counterfactual paths
upload_time2023-07-25 07:35:17
maintainer
docs_urlNone
authorBastian Pfeifer
requires_python>=3.6
licenseMIT
keywords explainable ai counterfactuals
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
<img src="https://github.com/pievos101/cpath/blob/main/logo.png" width="400">
</p>

# Explainable AI with counterfactual paths

## Usage

Install the Python package cpath via pip

```python
pip install cpath
```

and import  

```python
import cpath
```

or from source 

```python
pip install ./cpath
import cpath
```

Other imports

```python
from imodels.util.data_util import get_clean_dataset
import numpy as np
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import balanced_accuracy_score
from sklearn.metrics import roc_auc_score

import sys
```

Example data set 

```python
clf_datasets = [
    ("breast-cancer", "breast_cancer", "imodels")
]

# Read in data set
X, y, feature_names = get_clean_dataset('breast_cancer', data_source='imodels')

# train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

```

### Random Forest 

```python

# number of trees 
ntrees = 10

clf = RandomForestClassifier(n_estimators=ntrees) 
clf.fit(X_train, y_train)
pred = clf.predict(X_test)

```

### Explain using cpath

```python

P = cpath.cpaths(clf, X_test, y_test)

T = cpath.transition(P, X_test, y_test)

IMP = cpath.importance(T)

IMP["global"]

```

## Citation
If you find cpath please cite

```
@misc{pfeifer2023explainable,
      title={Explainable AI with counterfactual paths}, 
      author={Bastian Pfeifer and Mateusz Krzyzinski and Hubert Baniecki and Anna Saranti and Andreas Holzinger and Przemyslaw Biecek},
      year={2023},
      eprint={2307.07764},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pievos101/cpath",
    "name": "cpath",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "Explainable AI,counterfactuals",
    "author": "Bastian Pfeifer",
    "author_email": "bastian.pfeifer@medunigraz.at",
    "download_url": "https://files.pythonhosted.org/packages/e8/1d/adddb9aff44c31f38ba5b7cc63433d544b0bafed5260c05f65c60c1201ed/cpath-0.0.1.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n<img src=\"https://github.com/pievos101/cpath/blob/main/logo.png\" width=\"400\">\n</p>\n\n# Explainable AI with counterfactual paths\n\n## Usage\n\nInstall the Python package cpath via pip\n\n```python\npip install cpath\n```\n\nand import  \n\n```python\nimport cpath\n```\n\nor from source \n\n```python\npip install ./cpath\nimport cpath\n```\n\nOther imports\n\n```python\nfrom imodels.util.data_util import get_clean_dataset\nimport numpy as np\nfrom sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor\nfrom sklearn.ensemble import RandomForestClassifier\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.metrics import balanced_accuracy_score\nfrom sklearn.metrics import roc_auc_score\n\nimport sys\n```\n\nExample data set \n\n```python\nclf_datasets = [\n    (\"breast-cancer\", \"breast_cancer\", \"imodels\")\n]\n\n# Read in data set\nX, y, feature_names = get_clean_dataset('breast_cancer', data_source='imodels')\n\n# train-test split\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)\n\n```\n\n### Random Forest \n\n```python\n\n# number of trees \nntrees = 10\n\nclf = RandomForestClassifier(n_estimators=ntrees) \nclf.fit(X_train, y_train)\npred = clf.predict(X_test)\n\n```\n\n### Explain using cpath\n\n```python\n\nP = cpath.cpaths(clf, X_test, y_test)\n\nT = cpath.transition(P, X_test, y_test)\n\nIMP = cpath.importance(T)\n\nIMP[\"global\"]\n\n```\n\n## Citation\nIf you find cpath please cite\n\n```\n@misc{pfeifer2023explainable,\n      title={Explainable AI with counterfactual paths}, \n      author={Bastian Pfeifer and Mateusz Krzyzinski and Hubert Baniecki and Anna Saranti and Andreas Holzinger and Przemyslaw Biecek},\n      year={2023},\n      eprint={2307.07764},\n      archivePrefix={arXiv},\n      primaryClass={cs.AI}\n}\n```\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Explainable AI with counterfactual paths",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/pievos101/cpath"
    },
    "split_keywords": [
        "explainable ai",
        "counterfactuals"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2bc86b0e9ef6ba941357886bfa66dd42f5bc74d771edd9b16a84617dbfa78d5b",
                "md5": "7477436e27944573d56d38d42101dbb4",
                "sha256": "c39c289f377a509829a75c0689bfd61c26d88e0748350b0b27faea155ee8bb40"
            },
            "downloads": -1,
            "filename": "cpath-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7477436e27944573d56d38d42101dbb4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 8463,
            "upload_time": "2023-07-25T07:35:15",
            "upload_time_iso_8601": "2023-07-25T07:35:15.676513Z",
            "url": "https://files.pythonhosted.org/packages/2b/c8/6b0e9ef6ba941357886bfa66dd42f5bc74d771edd9b16a84617dbfa78d5b/cpath-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e81dadddb9aff44c31f38ba5b7cc63433d544b0bafed5260c05f65c60c1201ed",
                "md5": "bdcc4e8d6850a34a445098503b9fa178",
                "sha256": "4aeb4618da86d962147502eaae794597c020e79bd9b24acee6e6689db618c32b"
            },
            "downloads": -1,
            "filename": "cpath-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "bdcc4e8d6850a34a445098503b9fa178",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 5351,
            "upload_time": "2023-07-25T07:35:17",
            "upload_time_iso_8601": "2023-07-25T07:35:17.374303Z",
            "url": "https://files.pythonhosted.org/packages/e8/1d/adddb9aff44c31f38ba5b7cc63433d544b0bafed5260c05f65c60c1201ed/cpath-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-25 07:35:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pievos101",
    "github_project": "cpath",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "cpath"
}
        
Elapsed time: 0.30018s