crewaimaster


Namecrewaimaster JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryA Python package for building intelligent multi-agent systems using CrewAI
upload_time2025-07-30 10:34:22
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseMIT
keywords ai multi-agent crewai automation agents
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # CrewAIMaster

**A Python package for building intelligent multi-agent systems using CrewAI**

CrewAIMaster is an advanced framework that automatically generates, manages, and executes multi-agent crews based on natural language task descriptions. It provides a CLI interface and comprehensive backend system for creating intelligent AI agents with memory, tools, and safety guardrails.

## 📦 Installation

```bash
# install from PyPI (when available)
pip install crewaimaster

# Or Install from source (recommended for development)
git clone https://github.com/VishApp/crewaimaster
cd crewaimaster
python -m venv venv
source venv/bin/activate
pip install -e .
```

## 🏃 Quick Start

### Prerequisites
```bash
# Install Python 3.10+
python --version

# Configure your LLM provider (see supported providers)
crewaimaster providers

# Quick setup with OpenAI (most common)
crewaimaster providers --configure openai --api-key "your-openai-key" --model "gpt-4"
```

### 1. Create Your First Crew with AI Orchestration

```bash
# Create an intelligent crew using AI analysis
crewaimaster create "Write a comprehensive market analysis report for electric vehicles in 2024" --name electric_vehicles_market_analysis_crew
```

### 2. Execute the Crew

```bash
# Run the crew (requires configured LLM provider)
crewaimaster run electric_vehicles_market_analysis_crew

# With additional context:
crewaimaster run electric_vehicles_market_analysis_crew --input "Focus on Tesla, BMW, and Volkswagen specifically"
```

### 3. Alternative Execution (Direct Script)

Generated crews can also be executed directly using environment variables:

```bash
# Navigate to the generated crew directory
cd crews/electric_vehicles_market_analysis_crew

# Run using standard environment variables
export OPENAI_API_KEY="your-openai-key"
./run.sh "your input"

# Or run using CrewAIMaster-specific environment variables
export CREWAIMASTER_LLM_PROVIDER="openai"
export CREWAIMASTER_LLM_MODEL="gpt-4"
export CREWAIMASTER_LLM_API_KEY="your-openai-key"
export CREWAIMASTER_LLM_BASE_URL="https://api.openai.com/v1"
```

## 🔄 Development Workflow

### Typical CrewAIMaster Workflow

```mermaid
flowchart LR
    A["`**1. Task Definition**
    Natural Language Task`"] --> B["`**2. AI Analysis**
    🤖 Task Complexity
    🎯 Agent Requirements
    🛠️ Tool Selection`"]
    
    B --> C["`**3. Crew Creation**
    👥 Agent Design
    🔧 Tool Assignment
    📋 Task Orchestration`"]
    
    C --> D["`**4. Execution**
    🏃 Multi-Agent Coordination
    🔄 Real-time Processing
    📊 Progress Monitoring`"]
    
    D --> E["`**5. Results & Analytics**
    📄 Output Generation
    📈 Performance Metrics
    💾 Persistent Storage`"]
    
    E --> F["`**6. Optimization**
    🔧 Crew Modification
    ⚡ Performance Tuning
    📤 Export/Backup`"]
    
    F --> G["`**7. Reuse & Scale**
    🔄 Crew Reusability
    📚 Knowledge Building
    🚀 Production Deployment`"]

    classDef stepStyle fill:#f9f9f9,stroke:#333,stroke-width:2px,color:#333
    class A,B,C,D,E,F,G stepStyle
```

## 🏗️ Architecture

CrewAIMaster follows a clean, layered architecture designed for intelligent multi-agent system creation and execution:

```mermaid
flowchart TD
    %% User Entry Point
    User[👤 User Input<br/>Natural Language Task] --> CLI[🖥️ CLI Interface<br/>crewaimaster create/run/providers]
    
    %% Configuration Layer
    CLI --> Config[⚙️ Configuration<br/>config.yaml<br/>LLM Providers]
    
    %% AI Orchestration Core
    CLI --> MasterAgent[🧠 Master Agent<br/>Intelligent Orchestrator]
    
    %% AI Analysis Pipeline
    MasterAgent --> TaskAnalyzer[📋 Task Analyzer<br/>• Complexity Assessment<br/>• Requirements Extraction<br/>• Agent Planning]
    
    TaskAnalyzer --> AgentDesigner[👥 Agent Designer<br/>• Role Definition<br/>• Tool Selection<br/>• Capability Mapping]
    
    AgentDesigner --> CrewOrchestrator[🎭 Crew Orchestrator<br/>• Team Assembly<br/>• Process Selection<br/>• Workflow Design]
    
    %% Core Generation Engine
    CrewOrchestrator --> CrewDesigner[🔧 Crew Designer<br/>File-Based Generator]
    Config --> CrewDesigner
    
    CrewDesigner --> FileGen[📁 File Generator<br/>• Project Structure<br/>• Python Modules<br/>• YAML Configs]
    
    %% Output Generation
    FileGen --> GeneratedFiles{📄 Generated Crew Project}
    
    %% Generated Project Structure
    GeneratedFiles --> AgentYAML[agents.yaml<br/>Agent Definitions]
    GeneratedFiles --> TaskYAML[tasks.yaml<br/>Task Specifications]
    GeneratedFiles --> CrewPY[crew.py<br/>CrewAI Implementation]
    GeneratedFiles --> MainPY[main.py<br/>Execution Entry Point]
    
    %% Execution Runtime
    MainPY --> CrewAI[🚀 CrewAI Runtime<br/>Multi-Agent Execution]
    
    CrewAI --> AgentA[🤖 Agent A<br/>Specialized Role]
    CrewAI --> AgentB[🤖 Agent B<br/>Specialized Role]
    CrewAI --> AgentC[🤖 Agent C<br/>Specialized Role]
    
    %% Tool Integration
    AgentA --> Tools[🛠️ Tool Registry<br/>• Web Search<br/>• File Operations<br/>• Code Execution<br/>• Custom Tools]
    AgentB --> Tools
    AgentC --> Tools
    
    %% LLM Integration
    Config --> LLMProvider[🔗 LLM Provider<br/>• OpenAI<br/>• Anthropic<br/>• Google<br/>• Custom APIs]
    LLMProvider --> AgentA
    LLMProvider --> AgentB
    LLMProvider --> AgentC
    LLMProvider --> MasterAgent
    
    %% Memory & Knowledge
    CrewAI --> Memory[🧠 Memory System<br/>• Agent Memory<br/>• Shared Context<br/>• Knowledge Base]
    
    %% Safety & Guardrails
    Tools --> Guardrails[🛡️ Guardrails<br/>• Safety Checks<br/>• Content Filtering<br/>• Validation]
    
    %% Final Output
    CrewAI --> Results[📊 Results<br/>Task Completion<br/>Generated Content]
    
    %% Styling
    classDef userLayer fill:#e8f5e8,stroke:#1b5e20,stroke-width:3px,color:#000
    classDef cliLayer fill:#e1f5fe,stroke:#01579b,stroke-width:2px,color:#000
    classDef aiLayer fill:#f3e5f5,stroke:#4a148c,stroke-width:2px,color:#000
    classDef coreLayer fill:#fff8e1,stroke:#ff8f00,stroke-width:2px,color:#000
    classDef fileLayer fill:#fce4ec,stroke:#880e4f,stroke-width:2px,color:#000
    classDef runtimeLayer fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#000
    classDef toolLayer fill:#f1f8e9,stroke:#33691e,stroke-width:2px,color:#000
    
    class User userLayer
    class CLI,Config cliLayer
    class MasterAgent,TaskAnalyzer,AgentDesigner,CrewOrchestrator aiLayer
    class CrewDesigner,FileGen,LLMProvider coreLayer
    class GeneratedFiles,AgentYAML,TaskYAML,CrewPY,MainPY fileLayer
    class CrewAI,AgentA,AgentB,AgentC,Memory,Results runtimeLayer
    class Tools,Guardrails toolLayer
```

### 🔄 Data Flow Explanation

1. **User Input**: Natural language task description via CLI
2. **AI Analysis**: Master Agent analyzes complexity and requirements
3. **Intelligent Design**: AI agents design optimal crew composition
4. **Code Generation**: Automated creation of CrewAI project files
5. **Execution**: Generated crew runs with real-time coordination
6. **Results**: Task completion with generated content and insights

### 🏛️ Architecture Overview

CrewAIMaster's architecture is designed for scalability, modularity, and intelligent automation:

#### 🎯 **User Interface Layer**
- **CLI Interface**: Rich terminal experience with typer and rich libraries
- **Command Processing**: Handles user commands and provides interactive feedback
- **Input Validation**: Ensures commands are properly formatted and validated

#### 🤖 **AI Orchestration Layer** (Core Innovation)
- **MasterAgentCrew**: Main orchestrator using AI agents for intelligent decision-making
- **TaskAnalyzerAgent**: Advanced NLP analysis of user tasks and requirements
- **AgentDesignerAgent**: Intelligent design of agents based on task requirements
- **CrewOrchestratorAgent**: Optimizes crew composition and execution strategies

#### ⚙️ **Core Processing Layer**
- **CrewDesigner**: Handles CrewAI integration and agent instantiation
- **TaskAnalyzer**: Legacy fallback for task analysis with pattern matching

#### 🛠️ **Tool Ecosystem**
- **Tool Registry**: Centralized management of all available tools
- **Available Tools**: Comprehensive library of built-in and custom tools
- **Guardrails**: Safety and validation systems for secure operation

#### 🔄 **Execution Engine**
- **CrewAI Engine**: Core execution engine for running multi-agent crews
- **Agent Memory**: Sophisticated memory management for agent learning and context

### 🔄 Data Flow

1. **User Input** → CLI processes commands and validates input
2. **AI Analysis** → MasterAgentCrew analyzes task using specialized AI agents
3. **Crew Creation** → CrewDesigner instantiates agents with appropriate tools
4. **Execution** → CrewAI Engine runs the crew with real-time monitoring

## 🛠️ Configuration

### LLM Provider Setup

CrewAIMaster uses a `.crewaimaster/config.yaml` configuration file for all settings. Environment variables are **no longer supported** - all configuration must be done via CLI commands or direct config file editing.

#### 📋 **View Available Providers**
```bash
# See all supported providers and configuration examples
crewaimaster providers
```

#### 🚀 **CLI Configuration (All Providers)**

Configure any supported provider using the CLI:

**OpenAI:**
```bash
crewaimaster providers --configure openai --api-key "your-openai-key" --model "gpt-4"
# Automatically sets base_url to https://api.openai.com/v1
```

**Anthropic:**
```bash
crewaimaster providers --configure anthropic --api-key "your-anthropic-key" --model "claude-3-sonnet-20240229"
# Automatically sets base_url to https://api.anthropic.com/v1
```

**Google:**
```bash
crewaimaster providers --configure google --api-key "your-google-key" --model "gemini-pro"
# Automatically sets base_url to https://generativelanguage.googleapis.com/v1beta
```

**DeepSeek:**
```bash
crewaimaster providers --configure deepseek --api-key "your-deepseek-key" --model "deepseek-chat"
# Automatically sets base_url to https://api.deepseek.com/v1
```

**Custom Provider:**
```bash
crewaimaster providers --configure custom --api-key "your-key" --base-url "https://api.example.com/v1" --model "gpt-4o-mini"
# Requires explicit base_url for custom endpoints
```

## 🤝 Contributing

We welcome contributions! Here's how to get started:

1. Fork the repository
2. Create a feature branch: `git checkout -b feature/amazing-feature`
3. Make your changes and add tests
4. Run tests: `pytest tests/`
5. Commit changes: `git commit -m 'Add amazing feature'`
6. Push to branch: `git push origin feature/amazing-feature`
7. Open a Pull Request

### Development Setup

```bash
# Clone and setup development environment
git clone https://github.com/VishApp/crewaimaster
cd crewaimaster

# Install development dependencies
pip install -e .
```

## 📄 License

CrewAIMaster is released under the MIT License. See [LICENSE](LICENSE) for details.

## 🙏 Acknowledgments

- [CrewAI](https://github.com/joaomdmoura/crewAI) - Core multi-agent framework
- [LangChain](https://github.com/langchain-ai/langchain) - LLM integration tools  
- [Sentence Transformers](https://github.com/UKPLab/sentence-transformers) - Text embeddings
- [FAISS](https://github.com/facebookresearch/faiss) - Vector similarity search

## 🔗 Links

- [GitHub Repository](https://github.com/VishApp/crewaimaster)
- [PyPI Package](https://pypi.org/project/crewaimaster)
---

**Built with ❤️ for the AI community**

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "crewaimaster",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "ai, multi-agent, crewai, automation, agents",
    "author": null,
    "author_email": "Vishnu Prasad <vishnuprasadapp@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/20/fb/42d09ee2e5a35320bc005c791811f109c240ca02d14eb7f89c90fe69576a/crewaimaster-0.1.1.tar.gz",
    "platform": null,
    "description": "# CrewAIMaster\n\n**A Python package for building intelligent multi-agent systems using CrewAI**\n\nCrewAIMaster is an advanced framework that automatically generates, manages, and executes multi-agent crews based on natural language task descriptions. It provides a CLI interface and comprehensive backend system for creating intelligent AI agents with memory, tools, and safety guardrails.\n\n## \ud83d\udce6 Installation\n\n```bash\n# install from PyPI (when available)\npip install crewaimaster\n\n# Or Install from source (recommended for development)\ngit clone https://github.com/VishApp/crewaimaster\ncd crewaimaster\npython -m venv venv\nsource venv/bin/activate\npip install -e .\n```\n\n## \ud83c\udfc3 Quick Start\n\n### Prerequisites\n```bash\n# Install Python 3.10+\npython --version\n\n# Configure your LLM provider (see supported providers)\ncrewaimaster providers\n\n# Quick setup with OpenAI (most common)\ncrewaimaster providers --configure openai --api-key \"your-openai-key\" --model \"gpt-4\"\n```\n\n### 1. Create Your First Crew with AI Orchestration\n\n```bash\n# Create an intelligent crew using AI analysis\ncrewaimaster create \"Write a comprehensive market analysis report for electric vehicles in 2024\" --name electric_vehicles_market_analysis_crew\n```\n\n### 2. Execute the Crew\n\n```bash\n# Run the crew (requires configured LLM provider)\ncrewaimaster run electric_vehicles_market_analysis_crew\n\n# With additional context:\ncrewaimaster run electric_vehicles_market_analysis_crew --input \"Focus on Tesla, BMW, and Volkswagen specifically\"\n```\n\n### 3. Alternative Execution (Direct Script)\n\nGenerated crews can also be executed directly using environment variables:\n\n```bash\n# Navigate to the generated crew directory\ncd crews/electric_vehicles_market_analysis_crew\n\n# Run using standard environment variables\nexport OPENAI_API_KEY=\"your-openai-key\"\n./run.sh \"your input\"\n\n# Or run using CrewAIMaster-specific environment variables\nexport CREWAIMASTER_LLM_PROVIDER=\"openai\"\nexport CREWAIMASTER_LLM_MODEL=\"gpt-4\"\nexport CREWAIMASTER_LLM_API_KEY=\"your-openai-key\"\nexport CREWAIMASTER_LLM_BASE_URL=\"https://api.openai.com/v1\"\n```\n\n## \ud83d\udd04 Development Workflow\n\n### Typical CrewAIMaster Workflow\n\n```mermaid\nflowchart LR\n    A[\"`**1. Task Definition**\n    Natural Language Task`\"] --> B[\"`**2. AI Analysis**\n    \ud83e\udd16 Task Complexity\n    \ud83c\udfaf Agent Requirements\n    \ud83d\udee0\ufe0f Tool Selection`\"]\n    \n    B --> C[\"`**3. Crew Creation**\n    \ud83d\udc65 Agent Design\n    \ud83d\udd27 Tool Assignment\n    \ud83d\udccb Task Orchestration`\"]\n    \n    C --> D[\"`**4. Execution**\n    \ud83c\udfc3 Multi-Agent Coordination\n    \ud83d\udd04 Real-time Processing\n    \ud83d\udcca Progress Monitoring`\"]\n    \n    D --> E[\"`**5. Results & Analytics**\n    \ud83d\udcc4 Output Generation\n    \ud83d\udcc8 Performance Metrics\n    \ud83d\udcbe Persistent Storage`\"]\n    \n    E --> F[\"`**6. Optimization**\n    \ud83d\udd27 Crew Modification\n    \u26a1 Performance Tuning\n    \ud83d\udce4 Export/Backup`\"]\n    \n    F --> G[\"`**7. Reuse & Scale**\n    \ud83d\udd04 Crew Reusability\n    \ud83d\udcda Knowledge Building\n    \ud83d\ude80 Production Deployment`\"]\n\n    classDef stepStyle fill:#f9f9f9,stroke:#333,stroke-width:2px,color:#333\n    class A,B,C,D,E,F,G stepStyle\n```\n\n## \ud83c\udfd7\ufe0f Architecture\n\nCrewAIMaster follows a clean, layered architecture designed for intelligent multi-agent system creation and execution:\n\n```mermaid\nflowchart TD\n    %% User Entry Point\n    User[\ud83d\udc64 User Input<br/>Natural Language Task] --> CLI[\ud83d\udda5\ufe0f CLI Interface<br/>crewaimaster create/run/providers]\n    \n    %% Configuration Layer\n    CLI --> Config[\u2699\ufe0f Configuration<br/>config.yaml<br/>LLM Providers]\n    \n    %% AI Orchestration Core\n    CLI --> MasterAgent[\ud83e\udde0 Master Agent<br/>Intelligent Orchestrator]\n    \n    %% AI Analysis Pipeline\n    MasterAgent --> TaskAnalyzer[\ud83d\udccb Task Analyzer<br/>\u2022 Complexity Assessment<br/>\u2022 Requirements Extraction<br/>\u2022 Agent Planning]\n    \n    TaskAnalyzer --> AgentDesigner[\ud83d\udc65 Agent Designer<br/>\u2022 Role Definition<br/>\u2022 Tool Selection<br/>\u2022 Capability Mapping]\n    \n    AgentDesigner --> CrewOrchestrator[\ud83c\udfad Crew Orchestrator<br/>\u2022 Team Assembly<br/>\u2022 Process Selection<br/>\u2022 Workflow Design]\n    \n    %% Core Generation Engine\n    CrewOrchestrator --> CrewDesigner[\ud83d\udd27 Crew Designer<br/>File-Based Generator]\n    Config --> CrewDesigner\n    \n    CrewDesigner --> FileGen[\ud83d\udcc1 File Generator<br/>\u2022 Project Structure<br/>\u2022 Python Modules<br/>\u2022 YAML Configs]\n    \n    %% Output Generation\n    FileGen --> GeneratedFiles{\ud83d\udcc4 Generated Crew Project}\n    \n    %% Generated Project Structure\n    GeneratedFiles --> AgentYAML[agents.yaml<br/>Agent Definitions]\n    GeneratedFiles --> TaskYAML[tasks.yaml<br/>Task Specifications]\n    GeneratedFiles --> CrewPY[crew.py<br/>CrewAI Implementation]\n    GeneratedFiles --> MainPY[main.py<br/>Execution Entry Point]\n    \n    %% Execution Runtime\n    MainPY --> CrewAI[\ud83d\ude80 CrewAI Runtime<br/>Multi-Agent Execution]\n    \n    CrewAI --> AgentA[\ud83e\udd16 Agent A<br/>Specialized Role]\n    CrewAI --> AgentB[\ud83e\udd16 Agent B<br/>Specialized Role]\n    CrewAI --> AgentC[\ud83e\udd16 Agent C<br/>Specialized Role]\n    \n    %% Tool Integration\n    AgentA --> Tools[\ud83d\udee0\ufe0f Tool Registry<br/>\u2022 Web Search<br/>\u2022 File Operations<br/>\u2022 Code Execution<br/>\u2022 Custom Tools]\n    AgentB --> Tools\n    AgentC --> Tools\n    \n    %% LLM Integration\n    Config --> LLMProvider[\ud83d\udd17 LLM Provider<br/>\u2022 OpenAI<br/>\u2022 Anthropic<br/>\u2022 Google<br/>\u2022 Custom APIs]\n    LLMProvider --> AgentA\n    LLMProvider --> AgentB\n    LLMProvider --> AgentC\n    LLMProvider --> MasterAgent\n    \n    %% Memory & Knowledge\n    CrewAI --> Memory[\ud83e\udde0 Memory System<br/>\u2022 Agent Memory<br/>\u2022 Shared Context<br/>\u2022 Knowledge Base]\n    \n    %% Safety & Guardrails\n    Tools --> Guardrails[\ud83d\udee1\ufe0f Guardrails<br/>\u2022 Safety Checks<br/>\u2022 Content Filtering<br/>\u2022 Validation]\n    \n    %% Final Output\n    CrewAI --> Results[\ud83d\udcca Results<br/>Task Completion<br/>Generated Content]\n    \n    %% Styling\n    classDef userLayer fill:#e8f5e8,stroke:#1b5e20,stroke-width:3px,color:#000\n    classDef cliLayer fill:#e1f5fe,stroke:#01579b,stroke-width:2px,color:#000\n    classDef aiLayer fill:#f3e5f5,stroke:#4a148c,stroke-width:2px,color:#000\n    classDef coreLayer fill:#fff8e1,stroke:#ff8f00,stroke-width:2px,color:#000\n    classDef fileLayer fill:#fce4ec,stroke:#880e4f,stroke-width:2px,color:#000\n    classDef runtimeLayer fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#000\n    classDef toolLayer fill:#f1f8e9,stroke:#33691e,stroke-width:2px,color:#000\n    \n    class User userLayer\n    class CLI,Config cliLayer\n    class MasterAgent,TaskAnalyzer,AgentDesigner,CrewOrchestrator aiLayer\n    class CrewDesigner,FileGen,LLMProvider coreLayer\n    class GeneratedFiles,AgentYAML,TaskYAML,CrewPY,MainPY fileLayer\n    class CrewAI,AgentA,AgentB,AgentC,Memory,Results runtimeLayer\n    class Tools,Guardrails toolLayer\n```\n\n### \ud83d\udd04 Data Flow Explanation\n\n1. **User Input**: Natural language task description via CLI\n2. **AI Analysis**: Master Agent analyzes complexity and requirements\n3. **Intelligent Design**: AI agents design optimal crew composition\n4. **Code Generation**: Automated creation of CrewAI project files\n5. **Execution**: Generated crew runs with real-time coordination\n6. **Results**: Task completion with generated content and insights\n\n### \ud83c\udfdb\ufe0f Architecture Overview\n\nCrewAIMaster's architecture is designed for scalability, modularity, and intelligent automation:\n\n#### \ud83c\udfaf **User Interface Layer**\n- **CLI Interface**: Rich terminal experience with typer and rich libraries\n- **Command Processing**: Handles user commands and provides interactive feedback\n- **Input Validation**: Ensures commands are properly formatted and validated\n\n#### \ud83e\udd16 **AI Orchestration Layer** (Core Innovation)\n- **MasterAgentCrew**: Main orchestrator using AI agents for intelligent decision-making\n- **TaskAnalyzerAgent**: Advanced NLP analysis of user tasks and requirements\n- **AgentDesignerAgent**: Intelligent design of agents based on task requirements\n- **CrewOrchestratorAgent**: Optimizes crew composition and execution strategies\n\n#### \u2699\ufe0f **Core Processing Layer**\n- **CrewDesigner**: Handles CrewAI integration and agent instantiation\n- **TaskAnalyzer**: Legacy fallback for task analysis with pattern matching\n\n#### \ud83d\udee0\ufe0f **Tool Ecosystem**\n- **Tool Registry**: Centralized management of all available tools\n- **Available Tools**: Comprehensive library of built-in and custom tools\n- **Guardrails**: Safety and validation systems for secure operation\n\n#### \ud83d\udd04 **Execution Engine**\n- **CrewAI Engine**: Core execution engine for running multi-agent crews\n- **Agent Memory**: Sophisticated memory management for agent learning and context\n\n### \ud83d\udd04 Data Flow\n\n1. **User Input** \u2192 CLI processes commands and validates input\n2. **AI Analysis** \u2192 MasterAgentCrew analyzes task using specialized AI agents\n3. **Crew Creation** \u2192 CrewDesigner instantiates agents with appropriate tools\n4. **Execution** \u2192 CrewAI Engine runs the crew with real-time monitoring\n\n## \ud83d\udee0\ufe0f Configuration\n\n### LLM Provider Setup\n\nCrewAIMaster uses a `.crewaimaster/config.yaml` configuration file for all settings. Environment variables are **no longer supported** - all configuration must be done via CLI commands or direct config file editing.\n\n#### \ud83d\udccb **View Available Providers**\n```bash\n# See all supported providers and configuration examples\ncrewaimaster providers\n```\n\n#### \ud83d\ude80 **CLI Configuration (All Providers)**\n\nConfigure any supported provider using the CLI:\n\n**OpenAI:**\n```bash\ncrewaimaster providers --configure openai --api-key \"your-openai-key\" --model \"gpt-4\"\n# Automatically sets base_url to https://api.openai.com/v1\n```\n\n**Anthropic:**\n```bash\ncrewaimaster providers --configure anthropic --api-key \"your-anthropic-key\" --model \"claude-3-sonnet-20240229\"\n# Automatically sets base_url to https://api.anthropic.com/v1\n```\n\n**Google:**\n```bash\ncrewaimaster providers --configure google --api-key \"your-google-key\" --model \"gemini-pro\"\n# Automatically sets base_url to https://generativelanguage.googleapis.com/v1beta\n```\n\n**DeepSeek:**\n```bash\ncrewaimaster providers --configure deepseek --api-key \"your-deepseek-key\" --model \"deepseek-chat\"\n# Automatically sets base_url to https://api.deepseek.com/v1\n```\n\n**Custom Provider:**\n```bash\ncrewaimaster providers --configure custom --api-key \"your-key\" --base-url \"https://api.example.com/v1\" --model \"gpt-4o-mini\"\n# Requires explicit base_url for custom endpoints\n```\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions! Here's how to get started:\n\n1. Fork the repository\n2. Create a feature branch: `git checkout -b feature/amazing-feature`\n3. Make your changes and add tests\n4. Run tests: `pytest tests/`\n5. Commit changes: `git commit -m 'Add amazing feature'`\n6. Push to branch: `git push origin feature/amazing-feature`\n7. Open a Pull Request\n\n### Development Setup\n\n```bash\n# Clone and setup development environment\ngit clone https://github.com/VishApp/crewaimaster\ncd crewaimaster\n\n# Install development dependencies\npip install -e .\n```\n\n## \ud83d\udcc4 License\n\nCrewAIMaster is released under the MIT License. See [LICENSE](LICENSE) for details.\n\n## \ud83d\ude4f Acknowledgments\n\n- [CrewAI](https://github.com/joaomdmoura/crewAI) - Core multi-agent framework\n- [LangChain](https://github.com/langchain-ai/langchain) - LLM integration tools  \n- [Sentence Transformers](https://github.com/UKPLab/sentence-transformers) - Text embeddings\n- [FAISS](https://github.com/facebookresearch/faiss) - Vector similarity search\n\n## \ud83d\udd17 Links\n\n- [GitHub Repository](https://github.com/VishApp/crewaimaster)\n- [PyPI Package](https://pypi.org/project/crewaimaster)\n---\n\n**Built with \u2764\ufe0f for the AI community**\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python package for building intelligent multi-agent systems using CrewAI",
    "version": "0.1.1",
    "project_urls": {
        "Changelog": "https://github.com/VishApp/crewaimaster/blob/main/CHANGELOG.md",
        "Documentation": "https://github.com/VishApp/crewaimaster#readme",
        "Homepage": "https://github.com/VishApp/crewaimaster",
        "Issues": "https://github.com/VishApp/crewaimaster/issues",
        "Repository": "https://github.com/VishApp/crewaimaster"
    },
    "split_keywords": [
        "ai",
        " multi-agent",
        " crewai",
        " automation",
        " agents"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a73d7c8c977e22d7035f000de4d6f68c84cfcc809b73e814d13984beb58d2f83",
                "md5": "7824b3676ed4e5a6742bfd90294e9fa5",
                "sha256": "8bc0781a07f050172e29c9d00adbe70790e947d27481647633f39d837ba41216"
            },
            "downloads": -1,
            "filename": "crewaimaster-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7824b3676ed4e5a6742bfd90294e9fa5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 122984,
            "upload_time": "2025-07-30T10:34:19",
            "upload_time_iso_8601": "2025-07-30T10:34:19.750182Z",
            "url": "https://files.pythonhosted.org/packages/a7/3d/7c8c977e22d7035f000de4d6f68c84cfcc809b73e814d13984beb58d2f83/crewaimaster-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "20fb42d09ee2e5a35320bc005c791811f109c240ca02d14eb7f89c90fe69576a",
                "md5": "c2da278aad3e2174483564097948f9da",
                "sha256": "b7a3a8cd09e6013097ed1e2681fb69627b2e616dee9e7cf02bba583b4843fd36"
            },
            "downloads": -1,
            "filename": "crewaimaster-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "c2da278aad3e2174483564097948f9da",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 376032,
            "upload_time": "2025-07-30T10:34:22",
            "upload_time_iso_8601": "2025-07-30T10:34:22.417948Z",
            "url": "https://files.pythonhosted.org/packages/20/fb/42d09ee2e5a35320bc005c791811f109c240ca02d14eb7f89c90fe69576a/crewaimaster-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-30 10:34:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "VishApp",
    "github_project": "crewaimaster",
    "github_not_found": true,
    "lcname": "crewaimaster"
}
        
Elapsed time: 1.04034s