================================
Chest X-Ray Anatomy Segmentation
================================
--------------
Installation
--------------
The project is available in PyPI. To install run:
``pip install cxas``
--------------------------------------
Running Segmentation from terminal
--------------------------------------
Segment the anatomy of X-Ray images \(.jpg,.png,.dcm\) and store the results \(npy,json,jpg,png,dicom-seg\):
```
cxas_segment -i {desired input directory or file} -o {desired output directory}
```
------------------------------------------
Running Feature Extraction from terminal
------------------------------------------
Extract anatomical features from X-Ray images \(.jpg,.png,.dcm\) and store the results \(.csv\):
``cxas_feat_extract -i {desired input directory or file} -o {desired output directory} -f {desired features to extract}``
----------------------------
Running either from terminal
----------------------------
Extract anatomical features from X-Ray images \(.jpg,.png,.dcm\) and store the results \(.csv\):
``cxas -i {desired input directory or file} -o {desired output directory} -mode {"segment" or "exract"} -f {required if mode == 'extract'}``
--------------
Citation
--------------
If you use this work or dataset, please cite:
.. code:: bibtex
@inproceedings{Seibold_2022_BMVC,
author = {Constantin Marc Seibold and Simon Reiß and M. Saquib Sarfraz and Matthias A. Fink and Victoria Mayer and Jan Sellner and Moon Sung Kim and Klaus H. Maier-Hein and Jens Kleesiek and Rainer Stiefelhagen},
title = {Detailed Annotations of Chest X-Rays via CT Projection for Report Understanding},
booktitle = {33rd British Machine Vision Conference 2022, {BMVC} 2022, London, UK, November 21-24, 2022},
publisher = {{BMVA} Press},
year = {2022},
url = {https://bmvc2022.mpi-inf.mpg.de/0058.pdf}
}
.. code:: bibtex
@inproceedings{Seibold_2023_CXAS,
author = {Constantin Seibold, Alexander Jaus, Matthias Fink,
Moon Kim, Simon Reiß, Jens Kleesiek*, Rainer Stiefelhagen*},
title = {Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via Volumetric Pseudo-Labeling},
year = {2023},
}
Raw data
{
"_id": null,
"home_page": "https://github.com/ConstantinSeibold/ChestXRayAnatomySegmentation",
"name": "cxas",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "chest x-ray anatomy segmntation pytorch",
"author": "Constantin Seibold",
"author_email": "constantin.seibold2@uk-essen.de",
"download_url": "https://files.pythonhosted.org/packages/a6/09/dbe3b6bf7de641364a609b27c85cfb8bd3048e1bdccb9fd167c6774eb7ed/cxas-0.0.17.tar.gz",
"platform": null,
"description": "================================\nChest X-Ray Anatomy Segmentation\n================================\n\n--------------\nInstallation\n--------------\n\nThe project is available in PyPI. To install run:\n\n``pip install cxas``\n\n\n--------------------------------------\nRunning Segmentation from terminal\n--------------------------------------\n\nSegment the anatomy of X-Ray images \\(.jpg,.png,.dcm\\) and store the results \\(npy,json,jpg,png,dicom-seg\\):\n\n```\ncxas_segment -i {desired input directory or file} -o {desired output directory}\n```\n\n------------------------------------------\nRunning Feature Extraction from terminal\n------------------------------------------\n\nExtract anatomical features from X-Ray images \\(.jpg,.png,.dcm\\) and store the results \\(.csv\\):\n\n``cxas_feat_extract -i {desired input directory or file} -o {desired output directory} -f {desired features to extract}``\n\n----------------------------\nRunning either from terminal\n----------------------------\n\nExtract anatomical features from X-Ray images \\(.jpg,.png,.dcm\\) and store the results \\(.csv\\):\n\n``cxas -i {desired input directory or file} -o {desired output directory} -mode {\"segment\" or \"exract\"} -f {required if mode == 'extract'}``\n\n\n\n--------------\nCitation\n--------------\n\nIf you use this work or dataset, please cite:\n\n.. code:: bibtex\n\n @inproceedings{Seibold_2022_BMVC,\n author = {Constantin Marc Seibold and Simon Rei\u00df and M. Saquib Sarfraz and Matthias A. Fink and Victoria Mayer and Jan Sellner and Moon Sung Kim and Klaus H. Maier-Hein and Jens Kleesiek and Rainer Stiefelhagen},\n title = {Detailed Annotations of Chest X-Rays via CT Projection for Report Understanding},\n booktitle = {33rd British Machine Vision Conference 2022, {BMVC} 2022, London, UK, November 21-24, 2022},\n publisher = {{BMVA} Press},\n year = {2022},\n url = {https://bmvc2022.mpi-inf.mpg.de/0058.pdf}\n }\n \n.. code:: bibtex\n\n @inproceedings{Seibold_2023_CXAS,\n author = {Constantin Seibold, Alexander Jaus, Matthias Fink,\n Moon Kim, Simon Rei\u00df, Jens Kleesiek*, Rainer Stiefelhagen*},\n title = {Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via Volumetric Pseudo-Labeling},\n year = {2023},\n }\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Segmentation of 159 anatomical classes for Chest X-Rays.",
"version": "0.0.17",
"project_urls": {
"Homepage": "https://github.com/ConstantinSeibold/ChestXRayAnatomySegmentation"
},
"split_keywords": [
"chest",
"x-ray",
"anatomy",
"segmntation",
"pytorch"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9ebba59f1bf0429ea3c12bbd3deae6638adcb90c2a7bf60f79d3fdf0ce5f60af",
"md5": "a2a0b774d5391a7d6bd9ff41eb1d8d80",
"sha256": "497a7b778fa0994f659aa4247d07afa16dedd85002c7de0bd0304999a76952f5"
},
"downloads": -1,
"filename": "cxas-0.0.17-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a2a0b774d5391a7d6bd9ff41eb1d8d80",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 41670,
"upload_time": "2024-10-01T07:48:48",
"upload_time_iso_8601": "2024-10-01T07:48:48.118608Z",
"url": "https://files.pythonhosted.org/packages/9e/bb/a59f1bf0429ea3c12bbd3deae6638adcb90c2a7bf60f79d3fdf0ce5f60af/cxas-0.0.17-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a609dbe3b6bf7de641364a609b27c85cfb8bd3048e1bdccb9fd167c6774eb7ed",
"md5": "ce3fd8112e9bb621093cdb50c934c937",
"sha256": "8ca7a72564370d51ace44651bc5e72d112d69db112c6d030021ffcdfccce8f24"
},
"downloads": -1,
"filename": "cxas-0.0.17.tar.gz",
"has_sig": false,
"md5_digest": "ce3fd8112e9bb621093cdb50c934c937",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 37493,
"upload_time": "2024-10-01T07:48:50",
"upload_time_iso_8601": "2024-10-01T07:48:50.087093Z",
"url": "https://files.pythonhosted.org/packages/a6/09/dbe3b6bf7de641364a609b27c85cfb8bd3048e1bdccb9fd167c6774eb7ed/cxas-0.0.17.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-01 07:48:50",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ConstantinSeibold",
"github_project": "ChestXRayAnatomySegmentation",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "cxas"
}