dafne


Namedafne JSON
Version 1.9a2 PyPI version JSON
download
home_pagehttps://github.com/dafne-imaging/dafne
SummaryDafne - Deep Anatomical Federated Network
upload_time2024-12-16 14:28:47
maintainerNone
docs_urlNone
authorFrancesco Santini
requires_python>=3.6
licenseNone
keywords
VCS
bugtrack_url
requirements h5py numpy scipy matplotlib pyqt5 nibabel pydicom dill progress appdirs requests scikit-image ormir-pyvoxel importlib_resources dafne-dl flexidep pyvistaqt torch torchvision dafne-dicomUtils
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI version](https://badge.fury.io/py/dafne.svg)](https://badge.fury.io/py/dafne)
[![PDF Documentation](https://img.shields.io/badge/Docs-pdf-brightgreen)](https://www.dafne.network/files/documentation.pdf)
[![HTML Documentation](https://img.shields.io/badge/Docs-html-brightgreen)](https://www.dafne.network/documentation/)

# Dafne
Deep Anatomical Federated Network is a program for the segmentation of medical images. It relies on a server to provide deep learning models to aid the segmentation, and incremental learning is used to improve the performance. See https://www.dafne.network/ for documentation and user information.

## Windows binary installation
Please install the Visual Studio Redistributable Package under windows: https://aka.ms/vs/16/release/vc_redist.x64.exe
Then, run the provided installer

## Mac binary installation
Install the Dafne App from the downloaded .dmg file as usual. Make sure to download the archive appropriate for your architecture (x86 or arm).

## Linux binary installation
The Linux distribution is a self-contained executable file. Simply download it, make it executable, and run it.

## pip installation
Dafne can also be installed with pip
`pip install dafne`

# Citing
If you are writing a scientific paper, and you used Dafne for your data evaluation, please cite the following paper:

> Santini F, Wasserthal J, Agosti A, et al. *Deep Anatomical Federated Network (Dafne): an open client/server framework for the continuous collaborative improvement of deep-learning-based medical image segmentation*. 2023 doi: [10.48550/arXiv.2302.06352](https://doi.org/10.48550/arXiv.2302.06352).


# Notes for developers

## dafne

Run: 
`python dafne.py <path_to_dicom_img>`


## Notes for the DL models

### Apply functions
The input of the apply function is:
```
dict({
    'image': np.array (2D image)
    'resolution': sequence with two elements (image resolution in mm)
    'split_laterality': True/False (indicates whether the ROIs should be split in L/R if applicable)
    'classification': str - The classification tag of the image (optional, to identify model variants)
})
```

The output of the classifier is a string.
The output of the segmenters is:
```
dict({
    roi_name_1: np.array (2D mask),
    roi_name_2: ...
})
``` 

### Incremental learn functions
The input of the incremental learn functions are:
```
training data: dict({
    'resolution': sequence (see above)
    'classification': str (see above)
    'image_list': list([
        - np.array (2D image)
        - np.array (2D image)
        - ...
    ])
})

training outputs: list([
    - dict({
        roi_name_1: np.array (2D mask)
        roi_name_2: ...
    })
    - dict...
```

Every entry in the training outputs list corresponds to an entry in the image_list inside the training data.
So `len(training_data['image_list']) == len(training_outputs)`.

# Acknowledgments
Input/Output is based on [DOSMA](https://github.com/ad12/DOSMA) - GPLv3 license

This software includes the [Segment Anything Model (SAM)](https://github.com/facebookresearch/segment-anything) - Apache 2.0 license

Other packages required for this project are listed in requirements.txt

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/dafne-imaging/dafne",
    "name": "dafne",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": null,
    "author": "Francesco Santini",
    "author_email": "francesco.santini@unibas.ch",
    "download_url": "https://files.pythonhosted.org/packages/49/2a/c1ff91863055c081cd5235272b39cff2d7a78a2c6d0133385bd3e5bed3f2/dafne-1.9a2.tar.gz",
    "platform": null,
    "description": "[![PyPI version](https://badge.fury.io/py/dafne.svg)](https://badge.fury.io/py/dafne)\n[![PDF Documentation](https://img.shields.io/badge/Docs-pdf-brightgreen)](https://www.dafne.network/files/documentation.pdf)\n[![HTML Documentation](https://img.shields.io/badge/Docs-html-brightgreen)](https://www.dafne.network/documentation/)\n\n# Dafne\nDeep Anatomical Federated Network is a program for the segmentation of medical images. It relies on a server to provide deep learning models to aid the segmentation, and incremental learning is used to improve the performance. See https://www.dafne.network/ for documentation and user information.\n\n## Windows binary installation\nPlease install the Visual Studio Redistributable Package under windows: https://aka.ms/vs/16/release/vc_redist.x64.exe\nThen, run the provided installer\n\n## Mac binary installation\nInstall the Dafne App from the downloaded .dmg file as usual. Make sure to download the archive appropriate for your architecture (x86 or arm).\n\n## Linux binary installation\nThe Linux distribution is a self-contained executable file. Simply download it, make it executable, and run it.\n\n## pip installation\nDafne can also be installed with pip\n`pip install dafne`\n\n# Citing\nIf you are writing a scientific paper, and you used Dafne for your data evaluation, please cite the following paper:\n\n> Santini F, Wasserthal J, Agosti A, et al. *Deep Anatomical Federated Network (Dafne): an open client/server framework for the continuous collaborative improvement of deep-learning-based medical image segmentation*. 2023 doi: [10.48550/arXiv.2302.06352](https://doi.org/10.48550/arXiv.2302.06352).\n\n\n# Notes for developers\n\n## dafne\n\nRun: \n`python dafne.py <path_to_dicom_img>`\n\n\n## Notes for the DL models\n\n### Apply functions\nThe input of the apply function is:\n```\ndict({\n    'image': np.array (2D image)\n    'resolution': sequence with two elements (image resolution in mm)\n    'split_laterality': True/False (indicates whether the ROIs should be split in L/R if applicable)\n    'classification': str - The classification tag of the image (optional, to identify model variants)\n})\n```\n\nThe output of the classifier is a string.\nThe output of the segmenters is:\n```\ndict({\n    roi_name_1: np.array (2D mask),\n    roi_name_2: ...\n})\n``` \n\n### Incremental learn functions\nThe input of the incremental learn functions are:\n```\ntraining data: dict({\n    'resolution': sequence (see above)\n    'classification': str (see above)\n    'image_list': list([\n        - np.array (2D image)\n        - np.array (2D image)\n        - ...\n    ])\n})\n\ntraining outputs: list([\n    - dict({\n        roi_name_1: np.array (2D mask)\n        roi_name_2: ...\n    })\n    - dict...\n```\n\nEvery entry in the training outputs list corresponds to an entry in the image_list inside the training data.\nSo `len(training_data['image_list']) == len(training_outputs)`.\n\n# Acknowledgments\nInput/Output is based on [DOSMA](https://github.com/ad12/DOSMA) - GPLv3 license\n\nThis software includes the [Segment Anything Model (SAM)](https://github.com/facebookresearch/segment-anything) - Apache 2.0 license\n\nOther packages required for this project are listed in requirements.txt\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Dafne - Deep Anatomical Federated Network",
    "version": "1.9a2",
    "project_urls": {
        "Bug Tracker": "https://github.com/dafne-imaging/dafne/issues",
        "Homepage": "https://github.com/dafne-imaging/dafne"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ddf577a316dff2fcfdaca079bf511ddba87735c87b5e6ba327201f7812cb708a",
                "md5": "6795b9572210d09a00e384fac3fb3043",
                "sha256": "d03199d6778f745753b3c33c2e032d4d427f5a0a1ba91ecc9ff02447f98187d3"
            },
            "downloads": -1,
            "filename": "dafne-1.9a2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6795b9572210d09a00e384fac3fb3043",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 618596,
            "upload_time": "2024-12-16T14:28:43",
            "upload_time_iso_8601": "2024-12-16T14:28:43.926810Z",
            "url": "https://files.pythonhosted.org/packages/dd/f5/77a316dff2fcfdaca079bf511ddba87735c87b5e6ba327201f7812cb708a/dafne-1.9a2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "492ac1ff91863055c081cd5235272b39cff2d7a78a2c6d0133385bd3e5bed3f2",
                "md5": "8492a9761de450a414e30faea66d0d92",
                "sha256": "269cb6b38d6b444d01275b7ab0d7250744ed8d32aa089cdc12fb1b8614733cd2"
            },
            "downloads": -1,
            "filename": "dafne-1.9a2.tar.gz",
            "has_sig": false,
            "md5_digest": "8492a9761de450a414e30faea66d0d92",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 593241,
            "upload_time": "2024-12-16T14:28:47",
            "upload_time_iso_8601": "2024-12-16T14:28:47.092089Z",
            "url": "https://files.pythonhosted.org/packages/49/2a/c1ff91863055c081cd5235272b39cff2d7a78a2c6d0133385bd3e5bed3f2/dafne-1.9a2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-16 14:28:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "dafne-imaging",
    "github_project": "dafne",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "h5py",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "pyqt5",
            "specs": []
        },
        {
            "name": "nibabel",
            "specs": []
        },
        {
            "name": "pydicom",
            "specs": []
        },
        {
            "name": "dill",
            "specs": []
        },
        {
            "name": "progress",
            "specs": []
        },
        {
            "name": "appdirs",
            "specs": []
        },
        {
            "name": "requests",
            "specs": []
        },
        {
            "name": "scikit-image",
            "specs": []
        },
        {
            "name": "ormir-pyvoxel",
            "specs": []
        },
        {
            "name": "importlib_resources",
            "specs": []
        },
        {
            "name": "dafne-dl",
            "specs": [
                [
                    ">=",
                    "1.4a2"
                ]
            ]
        },
        {
            "name": "flexidep",
            "specs": [
                [
                    ">=",
                    "0.0.6"
                ]
            ]
        },
        {
            "name": "pyvistaqt",
            "specs": []
        },
        {
            "name": "torch",
            "specs": []
        },
        {
            "name": "torchvision",
            "specs": []
        },
        {
            "name": "dafne-dicomUtils",
            "specs": []
        }
    ],
    "lcname": "dafne"
}
        
Elapsed time: 1.21163s