damast


Namedamast JSON
Version 0.1.12 PyPI version JSON
download
home_pageNone
SummaryPackage to improve the development of transparent, replicable data processing pipelines
upload_time2025-08-26 09:33:22
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
license3-Clause BSD License / New BSD License Copyright (c) 2023-2025 Simula Research Laboratory, Oslo, Norway Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
keywords data processing pipeline machine learning
VCS
bugtrack_url
requirements absl-py astunparse blosc2 cachetools certifi charset-normalizer click cloudpickle commonmark contourpy cycler Cython flatbuffers fonttools fsspec gast google-auth google-auth-oauthlib google-pasta grpcio h5py idna joblib kaleido keras kiwisolver libclang llvmlite locket Markdown MarkupSafe matplotlib msgpack numba numexpr numpy oauthlib opt-einsum packaging pandas partd Pillow plotly protobuf py-cpuinfo pyasn1 pyasn1-modules Pygments pyparsing python-dateutil pytz PyYAML requests requests-oauthlib rich rsa scikit-learn scipy six tables tenacity tensorboard tensorboard-data-server tensorboard-plugin-wit tensorflow tensorflow-estimator tensorflow-io-gcs-filesystem termcolor threadpoolctl toolz typing_extensions urllib3 Werkzeug wrapt
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Supported Python Versions](https://img.shields.io/pypi/pyversions/damast)](https://pypi.org/project/damast/)
![test workflow](https://github.com/simula/damast/actions/workflows/test.yml/badge.svg)
![docs workflow](https://github.com/simula/damast/actions/workflows/gh-pages.yml/badge.svg)

# damast: Creation of reproducible data processing pipelines

The main purpose of this library is to faciliate the reusability of data and data processing pipelines.
For this, damast introduces a means to associate metadata with data frames and enables consistency checking.

To ensure semantic consistency, transformation steps in a pipeline can be annotated with
allowed data ranges for inputs and outputs, as well as units.

```
class LatLonTransformer(PipelineElement):
    """
    The LatLonTransformer will consume a lat(itude) and a lon(gitude) column and perform
    cyclic normalization. It will add four columns to a dataframe, namely lat_x, lat_y, lon_x, lon_y.
    """
    @damast.core.describe("Lat/Lon cyclic transformation")
    @damast.core.input({
        "lat": {"unit": "deg"},
        "lon": {"unit": "deg"}
    })
    @damast.core.output({
        "lat_x": {"value_range": MinMax(-1.0, 1.0)},
        "lat_y": {"value_range": MinMax(-1.0, 1.0)},
        "lon_x": {"value_range": MinMax(-1.0, 1.0)},
        "lon_y": {"value_range": MinMax(-1.0, 1.0)}
    })
    def transform(self, df: AnnotatedDataFrame) -> AnnotatedDataFrame:
        lat_cyclic_transformer = CycleTransformer(features=["lat"], n=180.0)
        lon_cyclic_transformer = CycleTransformer(features=["lon"], n=360.0)

        _df = lat_cyclic_transformer.fit_transform(df=df)
        _df = lon_cyclic_transformer.fit_transform(df=_df)
        return _df
```

For detailed examples, check the documentation at: https://simula.github.io/damast

## Installation and Development Setup

Firstly, you will want to create you an isolated development environment for Python, that being conda or venv-based.
The following will go through a venv based setup.

Let us assume you operate with a 'workspace' directory for this project:

```
    cd workspace
```

Here, you will create a virtual environment.
Get an overview over venv (command):

```
    python -m venv --help
```

Create your venv and activate it:
```
    python -m venv damast-venv
    source damast-venv/bin/activate
```

Clone the repo and install:

```
    git clone https://github.com/simula/damast
    cd damast
    pip install -e ".[test,dev]"
```

or alternatively:
```
    pip install damast[test,dev]
```

## Docker Container

If you prefer to work or start with a docker container you can build it using the provided [Dockerfile](https://github.com/simula/damast/blob/main/Dockerfile)
```
    docker build -t damast:latest -f Dockerfile .
```

To enter the container:
```
    docker run -it --rm damast:latest /bin/bash
```

## Usage

To get the usage documentation it is easiest to check the published documentation [here](https://simula.github.io/damast/README.html).

Otherwise, you can also locally generate the latest documentation once you installed the package:
```
    tox -e build_docs
```
Then open the documentation with a browser:
```
    <yourbrowser> _build/html/index.html
```


## Testing

Install the project and use the predefined default test environment:

    tox -e py

## Contributing

This project is open to contributions. For details on how to contribute please check the [Contribution Guidelines](https://github.com/simula/damast/blob/main/CONTRIBUTING.md)

## License
This project is licensed under the [BSD-3-Clause License](https://github.com/simula/damast/blob/main/LICENSE).

## Copyright

Copyright (c) 2023-2025 [Simula Research Laboratory, Oslo, Norway](https://www.simula.no/research/research-departments)

## Acknowledgments

This work has been derived from work that is part of the [T-SAR project](https://www.simula.no/research/projects/t-sar)
Some derived work is mainly part of the specific data processing for the 'maritime' domain.

The development of this library is part of the EU-project [AI4COPSEC](https://ai4copsec.eu) which receives funding
 from the Horizon Europe framework programme under Grant Agreement N. 101190021.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "damast",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "Thomas Roehr <roehr@simula.no>, \"J\u00f8rgen S. Dokken\" <dokken@simula.no>, Anne Fouilloux <annef@simula.no>",
    "keywords": "data processing, pipeline, machine learning",
    "author": null,
    "author_email": "Thomas Roehr <roehr@simula.no>, \"J\u00f8rgen S. Dokken\" <dokken@simula.no>, Anne Fouilloux <annef@simula.no>, Pierre Bernab\u00e9 <pierbernabe@simula.no>",
    "download_url": "https://files.pythonhosted.org/packages/4e/e1/c664eaa96ae66d6b52280a2de0814fcc905928e35c54e151269d2f663641/damast-0.1.12.tar.gz",
    "platform": null,
    "description": "[![Supported Python Versions](https://img.shields.io/pypi/pyversions/damast)](https://pypi.org/project/damast/)\n![test workflow](https://github.com/simula/damast/actions/workflows/test.yml/badge.svg)\n![docs workflow](https://github.com/simula/damast/actions/workflows/gh-pages.yml/badge.svg)\n\n# damast: Creation of reproducible data processing pipelines\n\nThe main purpose of this library is to faciliate the reusability of data and data processing pipelines.\nFor this, damast introduces a means to associate metadata with data frames and enables consistency checking.\n\nTo ensure semantic consistency, transformation steps in a pipeline can be annotated with\nallowed data ranges for inputs and outputs, as well as units.\n\n```\nclass LatLonTransformer(PipelineElement):\n    \"\"\"\n    The LatLonTransformer will consume a lat(itude) and a lon(gitude) column and perform\n    cyclic normalization. It will add four columns to a dataframe, namely lat_x, lat_y, lon_x, lon_y.\n    \"\"\"\n    @damast.core.describe(\"Lat/Lon cyclic transformation\")\n    @damast.core.input({\n        \"lat\": {\"unit\": \"deg\"},\n        \"lon\": {\"unit\": \"deg\"}\n    })\n    @damast.core.output({\n        \"lat_x\": {\"value_range\": MinMax(-1.0, 1.0)},\n        \"lat_y\": {\"value_range\": MinMax(-1.0, 1.0)},\n        \"lon_x\": {\"value_range\": MinMax(-1.0, 1.0)},\n        \"lon_y\": {\"value_range\": MinMax(-1.0, 1.0)}\n    })\n    def transform(self, df: AnnotatedDataFrame) -> AnnotatedDataFrame:\n        lat_cyclic_transformer = CycleTransformer(features=[\"lat\"], n=180.0)\n        lon_cyclic_transformer = CycleTransformer(features=[\"lon\"], n=360.0)\n\n        _df = lat_cyclic_transformer.fit_transform(df=df)\n        _df = lon_cyclic_transformer.fit_transform(df=_df)\n        return _df\n```\n\nFor detailed examples, check the documentation at: https://simula.github.io/damast\n\n## Installation and Development Setup\n\nFirstly, you will want to create you an isolated development environment for Python, that being conda or venv-based.\nThe following will go through a venv based setup.\n\nLet us assume you operate with a 'workspace' directory for this project:\n\n```\n    cd workspace\n```\n\nHere, you will create a virtual environment.\nGet an overview over venv (command):\n\n```\n    python -m venv --help\n```\n\nCreate your venv and activate it:\n```\n    python -m venv damast-venv\n    source damast-venv/bin/activate\n```\n\nClone the repo and install:\n\n```\n    git clone https://github.com/simula/damast\n    cd damast\n    pip install -e \".[test,dev]\"\n```\n\nor alternatively:\n```\n    pip install damast[test,dev]\n```\n\n## Docker Container\n\nIf you prefer to work or start with a docker container you can build it using the provided [Dockerfile](https://github.com/simula/damast/blob/main/Dockerfile)\n```\n    docker build -t damast:latest -f Dockerfile .\n```\n\nTo enter the container:\n```\n    docker run -it --rm damast:latest /bin/bash\n```\n\n## Usage\n\nTo get the usage documentation it is easiest to check the published documentation [here](https://simula.github.io/damast/README.html).\n\nOtherwise, you can also locally generate the latest documentation once you installed the package:\n```\n    tox -e build_docs\n```\nThen open the documentation with a browser:\n```\n    <yourbrowser> _build/html/index.html\n```\n\n\n## Testing\n\nInstall the project and use the predefined default test environment:\n\n    tox -e py\n\n## Contributing\n\nThis project is open to contributions. For details on how to contribute please check the [Contribution Guidelines](https://github.com/simula/damast/blob/main/CONTRIBUTING.md)\n\n## License\nThis project is licensed under the [BSD-3-Clause License](https://github.com/simula/damast/blob/main/LICENSE).\n\n## Copyright\n\nCopyright (c) 2023-2025 [Simula Research Laboratory, Oslo, Norway](https://www.simula.no/research/research-departments)\n\n## Acknowledgments\n\nThis work has been derived from work that is part of the [T-SAR project](https://www.simula.no/research/projects/t-sar)\nSome derived work is mainly part of the specific data processing for the 'maritime' domain.\n\nThe development of this library is part of the EU-project [AI4COPSEC](https://ai4copsec.eu) which receives funding\n from the Horizon Europe framework programme under Grant Agreement N. 101190021.\n",
    "bugtrack_url": null,
    "license": "3-Clause BSD License / New BSD License\n        \n        Copyright (c) 2023-2025 Simula Research Laboratory, Oslo, Norway\n        \n        Redistribution and use in source and binary forms, with or without\n        modification, are permitted provided that the following conditions are met:\n        \n        1. Redistributions of source code must retain the above copyright notice, this\n        list of conditions and the following disclaimer.\n        \n        2. Redistributions in binary form must reproduce the above copyright notice,\n        this list of conditions and the following disclaimer in the documentation\n        and/or other materials provided with the distribution.\n        \n        3. Neither the name of the copyright holder nor the names of its contributors\n        may be used to endorse or promote products derived from this software without\n        specific prior written permission.\n        \n        THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" AND\n        ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED\n        WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\n        DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE\n        FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\n        DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR\n        SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER\n        CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,\n        OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE\n        OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n        ",
    "summary": "Package to improve the development of transparent, replicable data processing pipelines",
    "version": "0.1.12",
    "project_urls": {
        "documentation": "https://simula.github.io/damast",
        "homepage": "https://simula.github.io/damast",
        "repository": "https://github.com/simula/damast"
    },
    "split_keywords": [
        "data processing",
        " pipeline",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6b01bec763a8ba8a7f74bd3a1a7051c545871387816c4b3b380ccd700c20d3e5",
                "md5": "6328e16314a7fe201c1c6c296fe60586",
                "sha256": "2bddd92b373f7ccafe58cbbe3fe6f4e5eb51ae0f01ac55f9d3d145a609a96cfa"
            },
            "downloads": -1,
            "filename": "damast-0.1.12-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6328e16314a7fe201c1c6c296fe60586",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 100200,
            "upload_time": "2025-08-26T09:33:21",
            "upload_time_iso_8601": "2025-08-26T09:33:21.732218Z",
            "url": "https://files.pythonhosted.org/packages/6b/01/bec763a8ba8a7f74bd3a1a7051c545871387816c4b3b380ccd700c20d3e5/damast-0.1.12-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4ee1c664eaa96ae66d6b52280a2de0814fcc905928e35c54e151269d2f663641",
                "md5": "baf944ff3c30ff6b4a7e39a393ebde40",
                "sha256": "5c974c5922619e13ca3766754658bdc20cbb48b27be685afefc0ce21813aed5e"
            },
            "downloads": -1,
            "filename": "damast-0.1.12.tar.gz",
            "has_sig": false,
            "md5_digest": "baf944ff3c30ff6b4a7e39a393ebde40",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 84334,
            "upload_time": "2025-08-26T09:33:22",
            "upload_time_iso_8601": "2025-08-26T09:33:22.978007Z",
            "url": "https://files.pythonhosted.org/packages/4e/e1/c664eaa96ae66d6b52280a2de0814fcc905928e35c54e151269d2f663641/damast-0.1.12.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-26 09:33:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "simula",
    "github_project": "damast",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "absl-py",
            "specs": [
                [
                    "==",
                    "1.3.0"
                ]
            ]
        },
        {
            "name": "astunparse",
            "specs": [
                [
                    "==",
                    "1.6.3"
                ]
            ]
        },
        {
            "name": "blosc2",
            "specs": [
                [
                    "==",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "cachetools",
            "specs": [
                [
                    "==",
                    "5.2.1"
                ]
            ]
        },
        {
            "name": "certifi",
            "specs": [
                [
                    "==",
                    "2022.12.7"
                ]
            ]
        },
        {
            "name": "charset-normalizer",
            "specs": [
                [
                    "==",
                    "2.1.1"
                ]
            ]
        },
        {
            "name": "click",
            "specs": [
                [
                    "==",
                    "8.1.3"
                ]
            ]
        },
        {
            "name": "cloudpickle",
            "specs": [
                [
                    "==",
                    "2.2.0"
                ]
            ]
        },
        {
            "name": "commonmark",
            "specs": [
                [
                    "==",
                    "0.9.1"
                ]
            ]
        },
        {
            "name": "contourpy",
            "specs": [
                [
                    "==",
                    "1.0.6"
                ]
            ]
        },
        {
            "name": "cycler",
            "specs": [
                [
                    "==",
                    "0.11.0"
                ]
            ]
        },
        {
            "name": "Cython",
            "specs": [
                [
                    "==",
                    "0.29.33"
                ]
            ]
        },
        {
            "name": "flatbuffers",
            "specs": [
                [
                    "==",
                    "23.1.4"
                ]
            ]
        },
        {
            "name": "fonttools",
            "specs": [
                [
                    "==",
                    "4.38.0"
                ]
            ]
        },
        {
            "name": "fsspec",
            "specs": [
                [
                    "==",
                    "2022.11.0"
                ]
            ]
        },
        {
            "name": "gast",
            "specs": [
                [
                    "==",
                    "0.4.0"
                ]
            ]
        },
        {
            "name": "google-auth",
            "specs": [
                [
                    "==",
                    "2.16.0"
                ]
            ]
        },
        {
            "name": "google-auth-oauthlib",
            "specs": [
                [
                    "==",
                    "0.4.6"
                ]
            ]
        },
        {
            "name": "google-pasta",
            "specs": [
                [
                    "==",
                    "0.2.0"
                ]
            ]
        },
        {
            "name": "grpcio",
            "specs": [
                [
                    "==",
                    "1.51.1"
                ]
            ]
        },
        {
            "name": "h5py",
            "specs": [
                [
                    "==",
                    "3.7.0"
                ]
            ]
        },
        {
            "name": "idna",
            "specs": [
                [
                    "==",
                    "3.4"
                ]
            ]
        },
        {
            "name": "joblib",
            "specs": [
                [
                    "==",
                    "1.2.0"
                ]
            ]
        },
        {
            "name": "kaleido",
            "specs": [
                [
                    "==",
                    "0.2.1"
                ]
            ]
        },
        {
            "name": "keras",
            "specs": [
                [
                    "==",
                    "2.11.0"
                ]
            ]
        },
        {
            "name": "kiwisolver",
            "specs": [
                [
                    "==",
                    "1.4.4"
                ]
            ]
        },
        {
            "name": "libclang",
            "specs": [
                [
                    "==",
                    "15.0.6.1"
                ]
            ]
        },
        {
            "name": "llvmlite",
            "specs": [
                [
                    "==",
                    "0.39.1"
                ]
            ]
        },
        {
            "name": "locket",
            "specs": [
                [
                    "==",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "Markdown",
            "specs": [
                [
                    "==",
                    "3.4.1"
                ]
            ]
        },
        {
            "name": "MarkupSafe",
            "specs": [
                [
                    "==",
                    "2.1.1"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    "==",
                    "3.6.2"
                ]
            ]
        },
        {
            "name": "msgpack",
            "specs": [
                [
                    "==",
                    "1.0.4"
                ]
            ]
        },
        {
            "name": "numba",
            "specs": [
                [
                    "==",
                    "0.56.4"
                ]
            ]
        },
        {
            "name": "numexpr",
            "specs": [
                [
                    "==",
                    "2.8.4"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.23.5"
                ]
            ]
        },
        {
            "name": "oauthlib",
            "specs": [
                [
                    "==",
                    "3.2.2"
                ]
            ]
        },
        {
            "name": "opt-einsum",
            "specs": [
                [
                    "==",
                    "3.3.0"
                ]
            ]
        },
        {
            "name": "packaging",
            "specs": [
                [
                    "==",
                    "23.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "1.5.2"
                ]
            ]
        },
        {
            "name": "partd",
            "specs": [
                [
                    "==",
                    "1.3.0"
                ]
            ]
        },
        {
            "name": "Pillow",
            "specs": [
                [
                    "==",
                    "9.4.0"
                ]
            ]
        },
        {
            "name": "plotly",
            "specs": [
                [
                    "==",
                    "5.11.0"
                ]
            ]
        },
        {
            "name": "protobuf",
            "specs": [
                [
                    "==",
                    "3.19.6"
                ]
            ]
        },
        {
            "name": "py-cpuinfo",
            "specs": [
                [
                    "==",
                    "9.0.0"
                ]
            ]
        },
        {
            "name": "pyasn1",
            "specs": [
                [
                    "==",
                    "0.4.8"
                ]
            ]
        },
        {
            "name": "pyasn1-modules",
            "specs": [
                [
                    "==",
                    "0.2.8"
                ]
            ]
        },
        {
            "name": "Pygments",
            "specs": [
                [
                    "==",
                    "2.14.0"
                ]
            ]
        },
        {
            "name": "pyparsing",
            "specs": [
                [
                    "==",
                    "3.0.9"
                ]
            ]
        },
        {
            "name": "python-dateutil",
            "specs": [
                [
                    "==",
                    "2.8.2"
                ]
            ]
        },
        {
            "name": "pytz",
            "specs": [
                [
                    "==",
                    "2022.7"
                ]
            ]
        },
        {
            "name": "PyYAML",
            "specs": [
                [
                    "==",
                    "6.0"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    "==",
                    "2.28.1"
                ]
            ]
        },
        {
            "name": "requests-oauthlib",
            "specs": [
                [
                    "==",
                    "1.3.1"
                ]
            ]
        },
        {
            "name": "rich",
            "specs": [
                [
                    "==",
                    "13.0.1"
                ]
            ]
        },
        {
            "name": "rsa",
            "specs": [
                [
                    "==",
                    "4.9"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    "==",
                    "1.2.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.10.0"
                ]
            ]
        },
        {
            "name": "six",
            "specs": [
                [
                    "==",
                    "1.16.0"
                ]
            ]
        },
        {
            "name": "tables",
            "specs": [
                [
                    "==",
                    "3.8.0"
                ]
            ]
        },
        {
            "name": "tenacity",
            "specs": [
                [
                    "==",
                    "8.1.0"
                ]
            ]
        },
        {
            "name": "tensorboard",
            "specs": [
                [
                    "==",
                    "2.11.0"
                ]
            ]
        },
        {
            "name": "tensorboard-data-server",
            "specs": [
                [
                    "==",
                    "0.6.1"
                ]
            ]
        },
        {
            "name": "tensorboard-plugin-wit",
            "specs": [
                [
                    "==",
                    "1.8.1"
                ]
            ]
        },
        {
            "name": "tensorflow",
            "specs": [
                [
                    "==",
                    "2.11.0"
                ]
            ]
        },
        {
            "name": "tensorflow-estimator",
            "specs": [
                [
                    "==",
                    "2.11.0"
                ]
            ]
        },
        {
            "name": "tensorflow-io-gcs-filesystem",
            "specs": [
                [
                    "==",
                    "0.29.0"
                ]
            ]
        },
        {
            "name": "termcolor",
            "specs": [
                [
                    "==",
                    "2.2.0"
                ]
            ]
        },
        {
            "name": "threadpoolctl",
            "specs": [
                [
                    "==",
                    "3.1.0"
                ]
            ]
        },
        {
            "name": "toolz",
            "specs": [
                [
                    "==",
                    "0.12.0"
                ]
            ]
        },
        {
            "name": "typing_extensions",
            "specs": [
                [
                    "==",
                    "4.4.0"
                ]
            ]
        },
        {
            "name": "urllib3",
            "specs": [
                [
                    "==",
                    "1.26.13"
                ]
            ]
        },
        {
            "name": "Werkzeug",
            "specs": [
                [
                    "==",
                    "2.2.2"
                ]
            ]
        },
        {
            "name": "wrapt",
            "specs": [
                [
                    "==",
                    "1.14.1"
                ]
            ]
        }
    ],
    "tox": true,
    "lcname": "damast"
}
        
Elapsed time: 1.85663s