# **Tabular Classification Package**
## **Modelos**
Este conjunto de plugins está diseñado específicamente para facilitar la integración de modelos de Machine Learning en aplicaciones con enfoque en clasificación tabular. Los modelos incluidos son:
- **Logistic Regression:** Un modelo efectivo para abordar problemas de clasificación binaria en el contexto tabular, destacando por su simplicidad y rendimiento.
- **SVC (Support Vector Classifier):** Este clasificador basado en vectores de soporte se adapta bien a conjuntos de datos tabulares complejos, ofreciendo soluciones robustas tanto para clasificación como para regresión.
- **KNN:** Un modelo de clasificación basado en la proximidad de los datos, que se adapta bien a conjuntos de datos tabulares con una estructura clara y bien definida.
- **Random Forest:** Un modelo de clasificación basado en árboles de decisión, que destaca por su versatilidad y rendimiento en una amplia variedad de conjuntos de datos tabulares.
Raw data
{
"_id": null,
"home_page": null,
"name": "dashai-test-tabular-classification-package",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "DashAI, Dataloader, Model, Package, Task",
"author": "DashAI team",
"author_email": "dashaisoftware@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/83/71/3cd572b9b3abe5e4321cdcff7f26ecb136ce094b702ea8c2825dfb073ac9/dashai_test_tabular_classification_package-0.1.3.tar.gz",
"platform": null,
"description": "# **Tabular Classification Package**\n\n## **Modelos**\n\nEste conjunto de plugins est\u00e1 dise\u00f1ado espec\u00edficamente para facilitar la integraci\u00f3n de modelos de Machine Learning en aplicaciones con enfoque en clasificaci\u00f3n tabular. Los modelos incluidos son:\n\n- **Logistic Regression:** Un modelo efectivo para abordar problemas de clasificaci\u00f3n binaria en el contexto tabular, destacando por su simplicidad y rendimiento.\n- **SVC (Support Vector Classifier):** Este clasificador basado en vectores de soporte se adapta bien a conjuntos de datos tabulares complejos, ofreciendo soluciones robustas tanto para clasificaci\u00f3n como para regresi\u00f3n.\n- **KNN:** Un modelo de clasificaci\u00f3n basado en la proximidad de los datos, que se adapta bien a conjuntos de datos tabulares con una estructura clara y bien definida.\n- **Random Forest:** Un modelo de clasificaci\u00f3n basado en \u00e1rboles de decisi\u00f3n, que destaca por su versatilidad y rendimiento en una amplia variedad de conjuntos de datos tabulares.\n",
"bugtrack_url": null,
"license": null,
"summary": "Tabular Classification Package",
"version": "0.1.3",
"project_urls": {
"Homepage": "https://github.com/DashAISoftware/DashAI",
"Issues": "https://github.com/DashAISoftware/DashAI/issues"
},
"split_keywords": [
"dashai",
" dataloader",
" model",
" package",
" task"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f84b3fe4296ce4be3f34b8644df9c2d8ed1ba6769eca6a20ff131c487f5a15ea",
"md5": "b6d21c3f73dc2c22d69d73b6cf04a679",
"sha256": "bc6604907d1a7c8869e866e5cafd3fb438c86f941989999193ea379cd5c57401"
},
"downloads": -1,
"filename": "dashai_test_tabular_classification_package-0.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b6d21c3f73dc2c22d69d73b6cf04a679",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 7793,
"upload_time": "2024-05-26T15:26:07",
"upload_time_iso_8601": "2024-05-26T15:26:07.878997Z",
"url": "https://files.pythonhosted.org/packages/f8/4b/3fe4296ce4be3f34b8644df9c2d8ed1ba6769eca6a20ff131c487f5a15ea/dashai_test_tabular_classification_package-0.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "83713cd572b9b3abe5e4321cdcff7f26ecb136ce094b702ea8c2825dfb073ac9",
"md5": "7b2322bbb0f272986ab5f60fd85e0b0c",
"sha256": "cbee7ee35cfa4769b785fdc04b5b9af861d65a4039169d5a9d548031a955786e"
},
"downloads": -1,
"filename": "dashai_test_tabular_classification_package-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "7b2322bbb0f272986ab5f60fd85e0b0c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 5858,
"upload_time": "2024-05-26T15:26:09",
"upload_time_iso_8601": "2024-05-26T15:26:09.365380Z",
"url": "https://files.pythonhosted.org/packages/83/71/3cd572b9b3abe5e4321cdcff7f26ecb136ce094b702ea8c2825dfb073ac9/dashai_test_tabular_classification_package-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-26 15:26:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "DashAISoftware",
"github_project": "DashAI",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "dependency-injector",
"specs": [
[
">=",
"4.0"
],
[
"<",
"5.0"
]
]
},
{
"name": "fastapi",
"specs": [
[
">=",
"0.96"
]
]
},
{
"name": "SQLAlchemy",
"specs": [
[
">=",
"2.0"
]
]
},
{
"name": "alembic",
"specs": [
[
"==",
"1.11.1"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.17.3"
]
]
},
{
"name": "joblib",
"specs": [
[
">=",
"1.2.0"
]
]
},
{
"name": "pydantic",
"specs": [
[
">=",
"2.0.2"
]
]
},
{
"name": "pydantic-settings",
"specs": [
[
">=",
"2.0.1"
]
]
},
{
"name": "starlette",
"specs": [
[
"<",
"0.28.0"
],
[
">=",
"0.27.0"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
">=",
"1.2.1"
]
]
},
{
"name": "datasets",
"specs": [
[
">=",
"2.9.0"
]
]
},
{
"name": "evaluate",
"specs": [
[
">=",
"0.4.0"
]
]
},
{
"name": "accelerate",
"specs": [
[
">=",
"0.20.3"
]
]
},
{
"name": "Pillow",
"specs": [
[
">=",
"9.5.0"
]
]
},
{
"name": "beartype",
"specs": [
[
"==",
"0.15.0"
]
]
},
{
"name": "typer",
"specs": [
[
"==",
"0.9.0"
]
]
},
{
"name": "rich",
"specs": [
[
">=",
"13.5.3"
]
]
},
{
"name": "torch",
"specs": [
[
"==",
"1.13.0"
]
]
},
{
"name": "transformers",
"specs": [
[
"==",
"4.23.1"
]
]
},
{
"name": "sacrebleu",
"specs": [
[
"==",
"2.3.1"
]
]
},
{
"name": "sentencepiece",
"specs": [
[
"==",
"0.1.97"
]
]
}
],
"lcname": "dashai-test-tabular-classification-package"
}