dbt-buddy


Namedbt-buddy JSON
Version 0.0.3 PyPI version JSON
download
home_pageNone
SummaryAI-based documentation for dbt-models
upload_time2024-06-14 11:45:54
maintainerNone
docs_urlNone
authorEgor Popov
requires_python<4.0,>=3.9
licenseNone
keywords dbt llm yandexgpt ai-documentation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # dbt-buddy
# Autogenerated documentation for dbt-models using YandexGPT LLM
 `dbt-buddy` is a python package with CLI that allows automatically create YAML-based documenation for **existing** dbt-model. Built-in method `fill_yaml_with_column_description()` will add columns description in Russian language using LLM-model [YandexGPT](https://cloud.yandex.ru/en/services/yandexgpt).

## Prerequisites
1. You need to create `.env` file in the dbt-project working directory and add the following secret:
   - `API_KEY=<secret key>` - required to access [YandexGPT API](https://cloud.yandex.com/en/docs/iam/concepts/authorization/api-key).
   - `CATALOG_ID=<catalog identifier>` - Yandex Cloud catalog ID is a part of [API request](https://yandex.cloud/en/docs/yandexgpt/quickstart).
2. `dbt-buddy` uses dbt-macros from [dbt-codegen](https://github.com/dbt-labs/dbt-codegen) package. It is necessary to install it by simply adding it to project's `packages.yml` file:
```
packages:
  - package: dbt-labs/codegen
    version: 0.12.1
```
Then run command:
```bash
$ dbt deps
```
## Available commands
1. `document` - generates YAML-based documentation with AI-proposed columms description.

### document
You can create documentation by simply running the command:
```bash
$ buddy document --model <dbt-model name>
```
**The result** will be a text string in the console, formatted in a documentation format acceptable for dbt.
#### CLI Options
1. `-m <model_name>`, `--model <model_name>`(**required**). The name of existing dbt-model.
2. `--project-dir`. The path to directory with dbt_project.yml. Default is the current working directory.
3. `--profiles-dir`. The path to directory with profiles.yml. Default is the current working directory.
4. `-s`, `--save`. If specified, the generated documentation is saved in a YAML-file in the same directory and with the same name as the specified model.
5. `-e`, `--examples`. If specified, YandexGPT will try to add column's possible accepted values (especially relevant if the SQL-query explicitly specifies values with the `CASE` statement).
6. `-v`, `--verbose`. If specified, the response from the YandexGPT API will be displayed in the console.

You can get the full list of existing options by running the command:
```bash
$ buddy document --help
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "dbt-buddy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "dbt, LLM, YandexGPT, AI-documentation",
    "author": "Egor Popov",
    "author_email": "Egor.POPOV@uni.rest",
    "download_url": "https://files.pythonhosted.org/packages/94/9d/16602f300c129ba4ed36ecfd8ea3ba978734e2f1feeaca407f49a177ceb4/dbt_buddy-0.0.3.tar.gz",
    "platform": null,
    "description": "# dbt-buddy\n# Autogenerated documentation for dbt-models using YandexGPT LLM\n `dbt-buddy` is a python package with CLI that allows automatically create YAML-based documenation for **existing** dbt-model. Built-in method `fill_yaml_with_column_description()` will add columns description in Russian language using LLM-model [YandexGPT](https://cloud.yandex.ru/en/services/yandexgpt).\n\n## Prerequisites\n1. You need to create `.env` file in the dbt-project working directory and add the following secret:\n   - `API_KEY=<secret key>` - required to access [YandexGPT API](https://cloud.yandex.com/en/docs/iam/concepts/authorization/api-key).\n   - `CATALOG_ID=<catalog identifier>` - Yandex Cloud catalog ID is a part of [API request](https://yandex.cloud/en/docs/yandexgpt/quickstart).\n2. `dbt-buddy` uses dbt-macros from [dbt-codegen](https://github.com/dbt-labs/dbt-codegen) package. It is necessary to install it by simply adding it to project's `packages.yml` file:\n```\npackages:\n  - package: dbt-labs/codegen\n    version: 0.12.1\n```\nThen run command:\n```bash\n$ dbt deps\n```\n## Available commands\n1. `document` - generates YAML-based documentation with AI-proposed columms description.\n\n### document\nYou can create documentation by simply running the command:\n```bash\n$ buddy document --model <dbt-model name>\n```\n**The result** will be a text string in the console, formatted in a documentation format acceptable for dbt.\n#### CLI Options\n1. `-m <model_name>`, `--model <model_name>`(**required**). The name of existing dbt-model.\n2. `--project-dir`. The path to directory with dbt_project.yml. Default is the current working directory.\n3. `--profiles-dir`. The path to directory with profiles.yml. Default is the current working directory.\n4. `-s`, `--save`. If specified, the generated documentation is saved in a YAML-file in the same directory and with the same name as the specified model.\n5. `-e`, `--examples`. If specified, YandexGPT will try to add column's possible accepted values (especially relevant if the SQL-query explicitly specifies values with the `CASE` statement).\n6. `-v`, `--verbose`. If specified, the response from the YandexGPT API will be displayed in the console.\n\nYou can get the full list of existing options by running the command:\n```bash\n$ buddy document --help\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "AI-based documentation for dbt-models",
    "version": "0.0.3",
    "project_urls": null,
    "split_keywords": [
        "dbt",
        " llm",
        " yandexgpt",
        " ai-documentation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "205581879838c109d284c882d3f0a0e7a956bd91bbe478c839acc170848691b7",
                "md5": "fb8597266695d5a0b041ce43c4f72bb5",
                "sha256": "ff7a0b8b1030bcb1a966f5b6e3b1a13626a88df9346e0700692cd148d80e77bb"
            },
            "downloads": -1,
            "filename": "dbt_buddy-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fb8597266695d5a0b041ce43c4f72bb5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 12095,
            "upload_time": "2024-06-14T11:45:53",
            "upload_time_iso_8601": "2024-06-14T11:45:53.340498Z",
            "url": "https://files.pythonhosted.org/packages/20/55/81879838c109d284c882d3f0a0e7a956bd91bbe478c839acc170848691b7/dbt_buddy-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "949d16602f300c129ba4ed36ecfd8ea3ba978734e2f1feeaca407f49a177ceb4",
                "md5": "4d34f903d35c55b8b756cb9d04d5c95c",
                "sha256": "feab7798e5671911a3fdfd3876b11b3c6d89230ee86021f0f3b6bf802079b553"
            },
            "downloads": -1,
            "filename": "dbt_buddy-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "4d34f903d35c55b8b756cb9d04d5c95c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 9810,
            "upload_time": "2024-06-14T11:45:54",
            "upload_time_iso_8601": "2024-06-14T11:45:54.734875Z",
            "url": "https://files.pythonhosted.org/packages/94/9d/16602f300c129ba4ed36ecfd8ea3ba978734e2f1feeaca407f49a177ceb4/dbt_buddy-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-14 11:45:54",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "dbt-buddy"
}
        
Elapsed time: 1.10787s