Name | dcmri JSON |
Version |
0.6.13
JSON |
| download |
home_page | None |
Summary | A python toolbox for dynamic contrast MRI |
upload_time | 2024-11-29 09:12:31 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.10 |
license | None |
keywords |
python
medical imaging
perfusion
mri
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
dcmri
=====
.. image:: https://github.com/dcmri/dcmri/actions/workflows/pytest-actions.yaml/badge.svg?branch=dev
:target: https://github.com/dcmri/dcmri/actions/workflows/pytest-actions.yaml
.. image:: https://codecov.io/gh/plaresmedima/dcmri/graph/badge.svg?token=DLVVTWQ0HA
:target: https://codecov.io/gh/plaresmedima/dcmri
.. image:: https://img.shields.io/pypi/v/dcmri?label=pypi%20package
:target: https://pypi.org/project/dcmri/
.. image:: https://img.shields.io/pypi/dm/dcmri
:target: https://pypistats.org/packages/dcmri
.. image:: https://img.shields.io/badge/License-Apache_2.0-blue.svg
:target: https://opensource.org/licenses/Apache-2.0
A python toolbox for dynamic contrast MRI
-----------------------------------------
- **Documentation:** https://dcmri.org
- **Source code:** https://github.com/dcmri/dcmri
*Note:* dcmri is under construction. At this stage, the API may still change
and features may be deprecated without warning.
Installation
------------
Install the latest version of dcmri:
.. code-block:: console
pip install dcmri
Typical usage: ROI-based analysis
---------------------------------
.. code-block:: python
import dcmri as dc
# Generate some test data
time, aif, roi, _ = dc.fake_tissue(CNR=50)
# Construct a tissue
tissue = dc.Tissue(aif=aif, t=time)
# Train the tissue on the data
tissue.train(time, roi)
# Check the fit to the data
tissue.plot(time, roi)
.. image:: https://dcmri.org/_images/tissue.png
:width: 800
.. code-block:: python
# Print the fitted parameters
tissue.print_params(round_to=3)
.. code-block:: console
--------------------------------
Free parameters with their stdev
--------------------------------
Blood volume (vb): 0.018 (0.002) mL/cm3
Interstitial volume (vi): 0.174 (0.004) mL/cm3
Permeability-surface area product (PS): 0.002 (0.0) mL/sec/cm3
----------------------------
Fixed and derived parameters
----------------------------
Plasma volume (vp): 0.01 mL/cm3
Interstitial mean transit time (Ti): 74.614 sec
Typical usage: pixel-based analysis
-----------------------------------
.. code-block:: python
# Generate some test data
n = 128
time, signal, aif, _ = dc.fake_brain(n)
# Construct an array of tissues
image = dc.TissueArray((n,n),
aif = aif, t = time,
kinetics = '2CU', verbose = 1)
# Train the tissue array on the data
image.train(time, signal)
# Plot the parameter maps
image.plot(time, signal)
.. image:: https://dcmri.org/_images/pixel_2cu.png
:width: 800
License
-------
Released under the `Apache 2.0 <https://opensource.org/licenses/Apache-2.0>`_
license::
Copyright (C) 2023-2024 dcmri developers
Raw data
{
"_id": null,
"home_page": null,
"name": "dcmri",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "python, medical imaging, perfusion, MRI",
"author": null,
"author_email": "Steven Sourbron <s.sourbron@sheffield.ac.uk>, Ebony Gunwhy <e.gunwhy@sheffield.ac.uk>, Eve Shalom <E.S.Shalom@sheffield.ac.uk>",
"download_url": "https://files.pythonhosted.org/packages/c1/5a/186c14efb30db0e985822a4abbdb66b2ccaa881169641df9f8cc4d8fdc3e/dcmri-0.6.13.tar.gz",
"platform": null,
"description": "dcmri\r\n=====\r\n\r\n.. image:: https://github.com/dcmri/dcmri/actions/workflows/pytest-actions.yaml/badge.svg?branch=dev\r\n :target: https://github.com/dcmri/dcmri/actions/workflows/pytest-actions.yaml\r\n\r\n.. image:: https://codecov.io/gh/plaresmedima/dcmri/graph/badge.svg?token=DLVVTWQ0HA \r\n :target: https://codecov.io/gh/plaresmedima/dcmri\r\n\r\n.. image:: https://img.shields.io/pypi/v/dcmri?label=pypi%20package \r\n :target: https://pypi.org/project/dcmri/\r\n\r\n.. image:: https://img.shields.io/pypi/dm/dcmri\r\n :target: https://pypistats.org/packages/dcmri\r\n\r\n.. image:: https://img.shields.io/badge/License-Apache_2.0-blue.svg\r\n :target: https://opensource.org/licenses/Apache-2.0\r\n\r\n\r\n\r\nA python toolbox for dynamic contrast MRI\r\n-----------------------------------------\r\n\r\n- **Documentation:** https://dcmri.org\r\n- **Source code:** https://github.com/dcmri/dcmri\r\n\r\n\r\n*Note:* dcmri is under construction. At this stage, the API may still change \r\nand features may be deprecated without warning.\r\n\r\n\r\nInstallation\r\n------------\r\n\r\nInstall the latest version of dcmri:\r\n\r\n.. code-block:: console\r\n\r\n pip install dcmri\r\n\r\n\r\nTypical usage: ROI-based analysis\r\n---------------------------------\r\n\r\n.. code-block:: python\r\n\r\n import dcmri as dc\r\n\r\n # Generate some test data\r\n time, aif, roi, _ = dc.fake_tissue(CNR=50) \r\n\r\n # Construct a tissue\r\n tissue = dc.Tissue(aif=aif, t=time) \r\n\r\n # Train the tissue on the data \r\n tissue.train(time, roi) \r\n\r\n # Check the fit to the data \r\n tissue.plot(time, roi) \r\n \r\n\r\n.. image:: https://dcmri.org/_images/tissue.png\r\n :width: 800\r\n\r\n\r\n.. code-block:: python\r\n\r\n # Print the fitted parameters\r\n tissue.print_params(round_to=3) \r\n\r\n\r\n.. code-block:: console\r\n\r\n --------------------------------\r\n Free parameters with their stdev\r\n --------------------------------\r\n\r\n Blood volume (vb): 0.018 (0.002) mL/cm3\r\n Interstitial volume (vi): 0.174 (0.004) mL/cm3\r\n Permeability-surface area product (PS): 0.002 (0.0) mL/sec/cm3\r\n\r\n ----------------------------\r\n Fixed and derived parameters\r\n ----------------------------\r\n\r\n Plasma volume (vp): 0.01 mL/cm3\r\n Interstitial mean transit time (Ti): 74.614 sec\r\n\r\n\r\nTypical usage: pixel-based analysis\r\n-----------------------------------\r\n\r\n.. code-block:: python\r\n\r\n # Generate some test data\r\n n = 128\r\n time, signal, aif, _ = dc.fake_brain(n) \r\n\r\n # Construct an array of tissues\r\n image = dc.TissueArray((n,n), \r\n aif = aif, t = time, \r\n kinetics = '2CU', verbose = 1) \r\n\r\n # Train the tissue array on the data\r\n image.train(time, signal) \r\n \r\n # Plot the parameter maps \r\n image.plot(time, signal) \r\n\r\n.. image:: https://dcmri.org/_images/pixel_2cu.png\r\n :width: 800\r\n\r\n\r\nLicense\r\n-------\r\n\r\nReleased under the `Apache 2.0 <https://opensource.org/licenses/Apache-2.0>`_ \r\nlicense::\r\n\r\n Copyright (C) 2023-2024 dcmri developers\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A python toolbox for dynamic contrast MRI",
"version": "0.6.13",
"project_urls": {
"Homepage": "https://dcmri.org",
"Source Code": "https://github.com/dcmri/dcmri"
},
"split_keywords": [
"python",
" medical imaging",
" perfusion",
" mri"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "74ffe88500ffed235cb3ea6673fdf726130ca598b46787890449d22dbf7f3ec0",
"md5": "c85ef6eab09c342d9308de6835420741",
"sha256": "bc4178175e49fa1b5ac2c177a4b55047f90375baa2624b68c04c904704c991a0"
},
"downloads": -1,
"filename": "dcmri-0.6.13-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c85ef6eab09c342d9308de6835420741",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 1033468,
"upload_time": "2024-11-29T09:12:21",
"upload_time_iso_8601": "2024-11-29T09:12:21.912820Z",
"url": "https://files.pythonhosted.org/packages/74/ff/e88500ffed235cb3ea6673fdf726130ca598b46787890449d22dbf7f3ec0/dcmri-0.6.13-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c15a186c14efb30db0e985822a4abbdb66b2ccaa881169641df9f8cc4d8fdc3e",
"md5": "de61cf33edd4c1f322be2bfc35d5155c",
"sha256": "5d46bde906b909cb7c31544c14b4925f8b181766729b8170fcebc920a99dad0f"
},
"downloads": -1,
"filename": "dcmri-0.6.13.tar.gz",
"has_sig": false,
"md5_digest": "de61cf33edd4c1f322be2bfc35d5155c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 1033021,
"upload_time": "2024-11-29T09:12:31",
"upload_time_iso_8601": "2024-11-29T09:12:31.260079Z",
"url": "https://files.pythonhosted.org/packages/c1/5a/186c14efb30db0e985822a4abbdb66b2ccaa881169641df9f8cc4d8fdc3e/dcmri-0.6.13.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-29 09:12:31",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "dcmri",
"github_project": "dcmri",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "dcmri"
}