dcmri


Namedcmri JSON
Version 0.6.13 PyPI version JSON
download
home_pageNone
SummaryA python toolbox for dynamic contrast MRI
upload_time2024-11-29 09:12:31
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords python medical imaging perfusion mri
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            dcmri
=====

.. image:: https://github.com/dcmri/dcmri/actions/workflows/pytest-actions.yaml/badge.svg?branch=dev
  :target: https://github.com/dcmri/dcmri/actions/workflows/pytest-actions.yaml

.. image:: https://codecov.io/gh/plaresmedima/dcmri/graph/badge.svg?token=DLVVTWQ0HA 
  :target: https://codecov.io/gh/plaresmedima/dcmri

.. image:: https://img.shields.io/pypi/v/dcmri?label=pypi%20package 
  :target: https://pypi.org/project/dcmri/

.. image:: https://img.shields.io/pypi/dm/dcmri
  :target: https://pypistats.org/packages/dcmri

.. image:: https://img.shields.io/badge/License-Apache_2.0-blue.svg
  :target: https://opensource.org/licenses/Apache-2.0



A python toolbox for dynamic contrast MRI
-----------------------------------------

- **Documentation:** https://dcmri.org
- **Source code:** https://github.com/dcmri/dcmri


*Note:* dcmri is under construction. At this stage, the API may still change 
and features may be deprecated without warning.


Installation
------------

Install the latest version of dcmri:

.. code-block:: console

    pip install dcmri


Typical usage: ROI-based analysis
---------------------------------

.. code-block:: python

    import dcmri as dc

    # Generate some test data
    time, aif, roi, _ = dc.fake_tissue(CNR=50)   

    # Construct a tissue
    tissue = dc.Tissue(aif=aif, t=time)  

    # Train the tissue on the data        
    tissue.train(time, roi)   

    # Check the fit to the data                  
    tissue.plot(time, roi)  
                     

.. image:: https://dcmri.org/_images/tissue.png
  :width: 800


.. code-block:: python

    # Print the fitted parameters
    tissue.print_params(round_to=3)               


.. code-block:: console

    --------------------------------
    Free parameters with their stdev
    --------------------------------

    Blood volume (vb): 0.018 (0.002) mL/cm3
    Interstitial volume (vi): 0.174 (0.004) mL/cm3
    Permeability-surface area product (PS): 0.002 (0.0) mL/sec/cm3

    ----------------------------
    Fixed and derived parameters
    ----------------------------

    Plasma volume (vp): 0.01 mL/cm3
    Interstitial mean transit time (Ti): 74.614 sec


Typical usage: pixel-based analysis
-----------------------------------

.. code-block:: python

    # Generate some test data
    n = 128
    time, signal, aif, _ = dc.fake_brain(n) 

    # Construct an array of tissues
    image = dc.TissueArray((n,n),               
        aif = aif, t = time, 
        kinetics = '2CU', verbose = 1)   

    # Train the tissue array on the data
    image.train(time, signal)  
    
    # Plot the parameter maps                  
    image.plot(time, signal)                        

.. image:: https://dcmri.org/_images/pixel_2cu.png
  :width: 800


License
-------

Released under the `Apache 2.0 <https://opensource.org/licenses/Apache-2.0>`_  
license::

  Copyright (C) 2023-2024 dcmri developers

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "dcmri",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "python, medical imaging, perfusion, MRI",
    "author": null,
    "author_email": "Steven Sourbron <s.sourbron@sheffield.ac.uk>, Ebony Gunwhy <e.gunwhy@sheffield.ac.uk>, Eve Shalom <E.S.Shalom@sheffield.ac.uk>",
    "download_url": "https://files.pythonhosted.org/packages/c1/5a/186c14efb30db0e985822a4abbdb66b2ccaa881169641df9f8cc4d8fdc3e/dcmri-0.6.13.tar.gz",
    "platform": null,
    "description": "dcmri\r\n=====\r\n\r\n.. image:: https://github.com/dcmri/dcmri/actions/workflows/pytest-actions.yaml/badge.svg?branch=dev\r\n  :target: https://github.com/dcmri/dcmri/actions/workflows/pytest-actions.yaml\r\n\r\n.. image:: https://codecov.io/gh/plaresmedima/dcmri/graph/badge.svg?token=DLVVTWQ0HA \r\n  :target: https://codecov.io/gh/plaresmedima/dcmri\r\n\r\n.. image:: https://img.shields.io/pypi/v/dcmri?label=pypi%20package \r\n  :target: https://pypi.org/project/dcmri/\r\n\r\n.. image:: https://img.shields.io/pypi/dm/dcmri\r\n  :target: https://pypistats.org/packages/dcmri\r\n\r\n.. image:: https://img.shields.io/badge/License-Apache_2.0-blue.svg\r\n  :target: https://opensource.org/licenses/Apache-2.0\r\n\r\n\r\n\r\nA python toolbox for dynamic contrast MRI\r\n-----------------------------------------\r\n\r\n- **Documentation:** https://dcmri.org\r\n- **Source code:** https://github.com/dcmri/dcmri\r\n\r\n\r\n*Note:* dcmri is under construction. At this stage, the API may still change \r\nand features may be deprecated without warning.\r\n\r\n\r\nInstallation\r\n------------\r\n\r\nInstall the latest version of dcmri:\r\n\r\n.. code-block:: console\r\n\r\n    pip install dcmri\r\n\r\n\r\nTypical usage: ROI-based analysis\r\n---------------------------------\r\n\r\n.. code-block:: python\r\n\r\n    import dcmri as dc\r\n\r\n    # Generate some test data\r\n    time, aif, roi, _ = dc.fake_tissue(CNR=50)   \r\n\r\n    # Construct a tissue\r\n    tissue = dc.Tissue(aif=aif, t=time)  \r\n\r\n    # Train the tissue on the data        \r\n    tissue.train(time, roi)   \r\n\r\n    # Check the fit to the data                  \r\n    tissue.plot(time, roi)  \r\n                     \r\n\r\n.. image:: https://dcmri.org/_images/tissue.png\r\n  :width: 800\r\n\r\n\r\n.. code-block:: python\r\n\r\n    # Print the fitted parameters\r\n    tissue.print_params(round_to=3)               \r\n\r\n\r\n.. code-block:: console\r\n\r\n    --------------------------------\r\n    Free parameters with their stdev\r\n    --------------------------------\r\n\r\n    Blood volume (vb): 0.018 (0.002) mL/cm3\r\n    Interstitial volume (vi): 0.174 (0.004) mL/cm3\r\n    Permeability-surface area product (PS): 0.002 (0.0) mL/sec/cm3\r\n\r\n    ----------------------------\r\n    Fixed and derived parameters\r\n    ----------------------------\r\n\r\n    Plasma volume (vp): 0.01 mL/cm3\r\n    Interstitial mean transit time (Ti): 74.614 sec\r\n\r\n\r\nTypical usage: pixel-based analysis\r\n-----------------------------------\r\n\r\n.. code-block:: python\r\n\r\n    # Generate some test data\r\n    n = 128\r\n    time, signal, aif, _ = dc.fake_brain(n) \r\n\r\n    # Construct an array of tissues\r\n    image = dc.TissueArray((n,n),               \r\n        aif = aif, t = time, \r\n        kinetics = '2CU', verbose = 1)   \r\n\r\n    # Train the tissue array on the data\r\n    image.train(time, signal)  \r\n    \r\n    # Plot the parameter maps                  \r\n    image.plot(time, signal)                        \r\n\r\n.. image:: https://dcmri.org/_images/pixel_2cu.png\r\n  :width: 800\r\n\r\n\r\nLicense\r\n-------\r\n\r\nReleased under the `Apache 2.0 <https://opensource.org/licenses/Apache-2.0>`_  \r\nlicense::\r\n\r\n  Copyright (C) 2023-2024 dcmri developers\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A python toolbox for dynamic contrast MRI",
    "version": "0.6.13",
    "project_urls": {
        "Homepage": "https://dcmri.org",
        "Source Code": "https://github.com/dcmri/dcmri"
    },
    "split_keywords": [
        "python",
        " medical imaging",
        " perfusion",
        " mri"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "74ffe88500ffed235cb3ea6673fdf726130ca598b46787890449d22dbf7f3ec0",
                "md5": "c85ef6eab09c342d9308de6835420741",
                "sha256": "bc4178175e49fa1b5ac2c177a4b55047f90375baa2624b68c04c904704c991a0"
            },
            "downloads": -1,
            "filename": "dcmri-0.6.13-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c85ef6eab09c342d9308de6835420741",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 1033468,
            "upload_time": "2024-11-29T09:12:21",
            "upload_time_iso_8601": "2024-11-29T09:12:21.912820Z",
            "url": "https://files.pythonhosted.org/packages/74/ff/e88500ffed235cb3ea6673fdf726130ca598b46787890449d22dbf7f3ec0/dcmri-0.6.13-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c15a186c14efb30db0e985822a4abbdb66b2ccaa881169641df9f8cc4d8fdc3e",
                "md5": "de61cf33edd4c1f322be2bfc35d5155c",
                "sha256": "5d46bde906b909cb7c31544c14b4925f8b181766729b8170fcebc920a99dad0f"
            },
            "downloads": -1,
            "filename": "dcmri-0.6.13.tar.gz",
            "has_sig": false,
            "md5_digest": "de61cf33edd4c1f322be2bfc35d5155c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 1033021,
            "upload_time": "2024-11-29T09:12:31",
            "upload_time_iso_8601": "2024-11-29T09:12:31.260079Z",
            "url": "https://files.pythonhosted.org/packages/c1/5a/186c14efb30db0e985822a4abbdb66b2ccaa881169641df9f8cc4d8fdc3e/dcmri-0.6.13.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-29 09:12:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "dcmri",
    "github_project": "dcmri",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "dcmri"
}
        
Elapsed time: 0.39321s