deepdoctection


Namedeepdoctection JSON
Version 0.44.0 PyPI version JSON
download
home_pagehttps://github.com/deepdoctection/deepdoctection
SummaryRepository for Document AI
upload_time2025-07-29 11:34:09
maintainerNone
docs_urlNone
authorDr. Janis Meyer
requires_python>=3.9
licenseApache License 2.0
keywords
VCS
bugtrack_url
requirements attrs catalogue certifi charset-normalizer filelock fsspec huggingface-hub idna importlib-metadata jsonlines lazy-imports mock networkx numpy packaging pillow pyparsing pypdf pypdfium2 pyyaml pyzmq requests scipy tabulate termcolor tqdm typing-extensions urllib3 zipp
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <img src="https://github.com/deepdoctection/deepdoctection/raw/master/docs/tutorials/_imgs/dd_logo.png" alt="Deep Doctection Logo" width="60%">
</p>

![GitHub Repo stars](https://img.shields.io/github/stars/deepdoctection/deepdoctection)
![PyPI - Version](https://img.shields.io/pypi/v/deepdoctection)
![PyPI - License](https://img.shields.io/pypi/l/deepdoctection)


------------------------------------------------------------------------------------------------------------------------
# NEW 

Version `v.0.43` includes a significant redesign of the Analyzer's default configuration.  Key changes include:

* More powerful models for Document Layout Analysis and OCR.
* Expanded functionality.
* Less dependencies.

------------------------------------------------------------------------------------------------------------------------

<p align="center">
  <h1 align="center">
  A Package for Document Understanding
  </h1>
</p>


**deep**doctection is a Python library that orchestrates Scan and PDF document layout analysis and extraction for RAG.
It also provides a framework for training, evaluating and inferencing Document AI models.

# Overview

- Document layout analysis and table recognition in PyTorch with 
[**Detectron2**](https://github.com/facebookresearch/detectron2/tree/main/detectron2) and 
[**Transformers**](https://github.com/huggingface/transformers)
  or Tensorflow and [**Tensorpack**](https://github.com/tensorpack),
- OCR with support of [**Tesseract**](https://github.com/tesseract-ocr/tesseract), [**DocTr**](https://github.com/mindee/doctr) and 
  [**AWS Textract**](https://aws.amazon.com/textract/),
- Document and token classification with the [**LayoutLM**](https://github.com/microsoft/unilm) family,
  [**LiLT**](https://github.com/jpWang/LiLT) and selected
  [**Bert**](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)-style including features like sliding windows.
- Text mining for native PDFs with [**pdfplumber**](https://github.com/jsvine/pdfplumber),
- Language detection with [**fastText**](https://github.com/facebookresearch/fastText),
- Deskewing and rotating images with [**jdeskew**](https://github.com/phamquiluan/jdeskew).
- Fine-tuning and evaluation tools.
- Lot's of [tutorials](https://github.com/deepdoctection/notebooks)

Have a look at the [**introduction notebook**](https://github.com/deepdoctection/notebooks/blob/main/Analyzer_Get_Started.ipynb)
for an easy start.

Check the [**release notes**](https://github.com/deepdoctection/deepdoctection/releases) for recent updates.


----------------------------------------------------------------------------------------

# Hugging Face Space Demo

Check the demo of a document layout analysis pipeline with OCR on 🤗
[**Hugging Face spaces**](https://huggingface.co/spaces/deepdoctection/deepdoctection) or use the gradio client. 

```
pip install gradio_client   # requires Python >= 3.10 
```

To process a single image:

```python
from gradio_client import Client, handle_file

if __name__ == "__main__":

    client = Client("deepdoctection/deepdoctection")
    result = client.predict(
        img=handle_file('/local_path/to/dir/file_name.jpeg'),  # accepts image files, e.g. JPEG, PNG
        pdf=None,   
        max_datapoints = 2,
        api_name = "/analyze_image"
    )
    print(result)
```

To process a PDF document:

```python
from gradio_client import Client, handle_file

if __name__ == "__main__":

    client = Client("deepdoctection/deepdoctection")
    result = client.predict(
        img=None,
        pdf=handle_file("/local_path/to/dir/your_doc.pdf"),
        max_datapoints = 2, # increase to process up to 9 pages
        api_name = "/analyze_image"
    )
    print(result)
```

--------------------------------------------------------------------------------------------------------

# Example

```python
import deepdoctection as dd
from IPython.core.display import HTML
from matplotlib import pyplot as plt

analyzer = dd.get_dd_analyzer()  # instantiate the built-in analyzer similar to the Hugging Face space demo

df = analyzer.analyze(path = "/path/to/your/doc.pdf")  # setting up pipeline
df.reset_state()                 # Trigger some initialization

doc = iter(df)
page = next(doc) 

image = page.viz(show_figures=True, show_residual_layouts=True)
plt.figure(figsize = (25,17))
plt.axis('off')
plt.imshow(image)
```

<p align="center">
  <img src="https://github.com/deepdoctection/deepdoctection/raw/master/docs/tutorials/_imgs/dd_rm_sample.png" 
alt="sample" width="40%">
</p>

```
HTML(page.tables[0].html)
```

<p align="center">
  <img src="https://github.com/deepdoctection/deepdoctection/raw/master/docs/tutorials/_imgs/dd_rm_table.png" 
alt="table" width="40%">
</p>

```
print(page.text)
```

<p align="center">
  <img src="https://github.com/deepdoctection/deepdoctection/raw/master/docs/tutorials/_imgs/dd_rm_text.png" 
alt="text" width="40%">
</p>


-----------------------------------------------------------------------------------------

# Requirements

![requirements](https://github.com/deepdoctection/deepdoctection/raw/master/docs/tutorials/_imgs/install_01.png)

- Linux or macOS. Windows is not supported but there is a [Dockerfile](./docker/pytorch-cpu-jupyter/Dockerfile) available.
- Python >= 3.9
- 2.2 \<= PyTorch **or** 2.11 \<= Tensorflow < 2.16. (For lower Tensorflow versions the code will only run on a GPU).
  Tensorflow support will be stopped from Python 3.11 onwards.
- To fine-tune models, a GPU is recommended.

| Task | PyTorch | Torchscript | Tensorflow |
|---------------------------------------------|:-------:|----------------|:------------:|
| Layout detection via Detectron2/Tensorpack | ✅ | ✅ (CPU only) | ✅ (GPU only) |
| Table recognition via Detectron2/Tensorpack | ✅ | ✅ (CPU only) | ✅ (GPU only) |
| Table transformer via Transformers | ✅ | ❌ | ❌ |
| Deformable-Detr | ✅ | ❌ | ❌ |
| DocTr | ✅ | ❌ | ✅ |
| LayoutLM (v1, v2, v3, XLM) via Transformers | ✅ | ❌ | ❌ |

------------------------------------------------------------------------------------------

# Installation

We recommend using a virtual environment.

## Get started installation

For a simple setup which is enough to parse documents with the default setting, install the following:

**PyTorch**

```
pip install transformers
pip install python-doctr==0.9.0
pip install deepdoctection
```

**TensorFlow**

```
pip install tensorpack
pip install python-doctr==0.9.0
pip install deepdoctection
```

Both setups are sufficient to run the [**introduction notebook**](https://github.com/deepdoctection/notebooks/blob/main/Get_Started.ipynb).

### Full installation

The following installation will give you ALL models available within the Deep Learning framework as well as all models
that are independent of Tensorflow/PyTorch.

**PyTorch**

First install **Detectron2** separately as it is not distributed via PyPi. Check the instruction
[here](https://detectron2.readthedocs.io/en/latest/tutorials/install.html) or try:

```
pip install detectron2@git+https://github.com/deepdoctection/detectron2.git
```

Then install **deep**doctection with all its dependencies:

```
pip install deepdoctection[pt]
```

**Tensorflow**

```
pip install deepdoctection[tf]
```


For further information, please consult the [**full installation instructions**](https://deepdoctection.readthedocs.io/en/latest/install/).


## Installation from source

Download the repository or clone via

```
git clone https://github.com/deepdoctection/deepdoctection.git
```

**PyTorch**

```
cd deepdoctection
pip install ".[pt]" # or "pip install -e .[pt]"
```

**Tensorflow**

```
cd deepdoctection
pip install ".[tf]" # or "pip install -e .[tf]"
```


## Running a Docker container from Docker hub

Pre-existing Docker images can be downloaded from the [Docker hub](https://hub.docker.com/r/deepdoctection/deepdoctection).

```
docker pull deepdoctection/deepdoctection:<release_tag> 
```

Use the Docker compose file `./docker/pytorch-gpu/docker-compose.yaml`.
In the `.env` file provided, specify the host directory where **deep**doctection's cache should be stored.
Additionally, specify a working directory to mount files to be processed into the container.

```
docker compose up -d
```

will start the container. There is no endpoint exposed, though.

-----------------------------------------------------------------------------------------------

# Credits

We thank all libraries that provide high quality code and pre-trained models. Without, it would have been impossible
to develop this framework.


# If you like **deep**doctection ...

...you can easily support the project by making it more visible. Leaving a star or a recommendation will help.

# License

Distributed under the Apache 2.0 License. Check [LICENSE](https://github.com/deepdoctection/deepdoctection/blob/master/LICENSE) for additional information.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/deepdoctection/deepdoctection",
    "name": "deepdoctection",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Dr. Janis Meyer",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/a0/a9/905917080f8efccc05670a211290063ae031bb7d9a8e9547147b28921927/deepdoctection-0.44.0.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n  <img src=\"https://github.com/deepdoctection/deepdoctection/raw/master/docs/tutorials/_imgs/dd_logo.png\" alt=\"Deep Doctection Logo\" width=\"60%\">\n</p>\n\n![GitHub Repo stars](https://img.shields.io/github/stars/deepdoctection/deepdoctection)\n![PyPI - Version](https://img.shields.io/pypi/v/deepdoctection)\n![PyPI - License](https://img.shields.io/pypi/l/deepdoctection)\n\n\n------------------------------------------------------------------------------------------------------------------------\n# NEW \n\nVersion `v.0.43` includes a significant redesign of the Analyzer's default configuration.  Key changes include:\n\n* More powerful models for Document Layout Analysis and OCR.\n* Expanded functionality.\n* Less dependencies.\n\n------------------------------------------------------------------------------------------------------------------------\n\n<p align=\"center\">\n  <h1 align=\"center\">\n  A Package for Document Understanding\n  </h1>\n</p>\n\n\n**deep**doctection is a Python library that orchestrates Scan and PDF document layout analysis and extraction for RAG.\nIt also provides a framework for training, evaluating and inferencing Document AI models.\n\n# Overview\n\n- Document layout analysis and table recognition in PyTorch with \n[**Detectron2**](https://github.com/facebookresearch/detectron2/tree/main/detectron2) and \n[**Transformers**](https://github.com/huggingface/transformers)\n  or Tensorflow and [**Tensorpack**](https://github.com/tensorpack),\n- OCR with support of [**Tesseract**](https://github.com/tesseract-ocr/tesseract), [**DocTr**](https://github.com/mindee/doctr) and \n  [**AWS Textract**](https://aws.amazon.com/textract/),\n- Document and token classification with the [**LayoutLM**](https://github.com/microsoft/unilm) family,\n  [**LiLT**](https://github.com/jpWang/LiLT) and selected\n  [**Bert**](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)-style including features like sliding windows.\n- Text mining for native PDFs with [**pdfplumber**](https://github.com/jsvine/pdfplumber),\n- Language detection with [**fastText**](https://github.com/facebookresearch/fastText),\n- Deskewing and rotating images with [**jdeskew**](https://github.com/phamquiluan/jdeskew).\n- Fine-tuning and evaluation tools.\n- Lot's of [tutorials](https://github.com/deepdoctection/notebooks)\n\nHave a look at the [**introduction notebook**](https://github.com/deepdoctection/notebooks/blob/main/Analyzer_Get_Started.ipynb)\nfor an easy start.\n\nCheck the [**release notes**](https://github.com/deepdoctection/deepdoctection/releases) for recent updates.\n\n\n----------------------------------------------------------------------------------------\n\n# Hugging Face Space Demo\n\nCheck the demo of a document layout analysis pipeline with OCR on \ud83e\udd17\n[**Hugging Face spaces**](https://huggingface.co/spaces/deepdoctection/deepdoctection) or use the gradio client. \n\n```\npip install gradio_client   # requires Python >= 3.10 \n```\n\nTo process a single image:\n\n```python\nfrom gradio_client import Client, handle_file\n\nif __name__ == \"__main__\":\n\n    client = Client(\"deepdoctection/deepdoctection\")\n    result = client.predict(\n        img=handle_file('/local_path/to/dir/file_name.jpeg'),  # accepts image files, e.g. JPEG, PNG\n        pdf=None,   \n        max_datapoints = 2,\n        api_name = \"/analyze_image\"\n    )\n    print(result)\n```\n\nTo process a PDF document:\n\n```python\nfrom gradio_client import Client, handle_file\n\nif __name__ == \"__main__\":\n\n    client = Client(\"deepdoctection/deepdoctection\")\n    result = client.predict(\n        img=None,\n        pdf=handle_file(\"/local_path/to/dir/your_doc.pdf\"),\n        max_datapoints = 2, # increase to process up to 9 pages\n        api_name = \"/analyze_image\"\n    )\n    print(result)\n```\n\n--------------------------------------------------------------------------------------------------------\n\n# Example\n\n```python\nimport deepdoctection as dd\nfrom IPython.core.display import HTML\nfrom matplotlib import pyplot as plt\n\nanalyzer = dd.get_dd_analyzer()  # instantiate the built-in analyzer similar to the Hugging Face space demo\n\ndf = analyzer.analyze(path = \"/path/to/your/doc.pdf\")  # setting up pipeline\ndf.reset_state()                 # Trigger some initialization\n\ndoc = iter(df)\npage = next(doc) \n\nimage = page.viz(show_figures=True, show_residual_layouts=True)\nplt.figure(figsize = (25,17))\nplt.axis('off')\nplt.imshow(image)\n```\n\n<p align=\"center\">\n  <img src=\"https://github.com/deepdoctection/deepdoctection/raw/master/docs/tutorials/_imgs/dd_rm_sample.png\" \nalt=\"sample\" width=\"40%\">\n</p>\n\n```\nHTML(page.tables[0].html)\n```\n\n<p align=\"center\">\n  <img src=\"https://github.com/deepdoctection/deepdoctection/raw/master/docs/tutorials/_imgs/dd_rm_table.png\" \nalt=\"table\" width=\"40%\">\n</p>\n\n```\nprint(page.text)\n```\n\n<p align=\"center\">\n  <img src=\"https://github.com/deepdoctection/deepdoctection/raw/master/docs/tutorials/_imgs/dd_rm_text.png\" \nalt=\"text\" width=\"40%\">\n</p>\n\n\n-----------------------------------------------------------------------------------------\n\n# Requirements\n\n![requirements](https://github.com/deepdoctection/deepdoctection/raw/master/docs/tutorials/_imgs/install_01.png)\n\n- Linux or macOS. Windows is not supported but there is a [Dockerfile](./docker/pytorch-cpu-jupyter/Dockerfile) available.\n- Python >= 3.9\n- 2.2 \\<= PyTorch **or** 2.11 \\<= Tensorflow < 2.16. (For lower Tensorflow versions the code will only run on a GPU).\n  Tensorflow support will be stopped from Python 3.11 onwards.\n- To fine-tune models, a GPU is recommended.\n\n| Task | PyTorch | Torchscript | Tensorflow |\n|---------------------------------------------|:-------:|----------------|:------------:|\n| Layout detection via Detectron2/Tensorpack | \u2705 | \u2705 (CPU only) | \u2705 (GPU only) |\n| Table recognition via Detectron2/Tensorpack | \u2705 | \u2705 (CPU only) | \u2705 (GPU only) |\n| Table transformer via Transformers | \u2705 | \u274c | \u274c |\n| Deformable-Detr | \u2705 | \u274c | \u274c |\n| DocTr | \u2705 | \u274c | \u2705 |\n| LayoutLM (v1, v2, v3, XLM) via Transformers | \u2705 | \u274c | \u274c |\n\n------------------------------------------------------------------------------------------\n\n# Installation\n\nWe recommend using a virtual environment.\n\n## Get started installation\n\nFor a simple setup which is enough to parse documents with the default setting, install the following:\n\n**PyTorch**\n\n```\npip install transformers\npip install python-doctr==0.9.0\npip install deepdoctection\n```\n\n**TensorFlow**\n\n```\npip install tensorpack\npip install python-doctr==0.9.0\npip install deepdoctection\n```\n\nBoth setups are sufficient to run the [**introduction notebook**](https://github.com/deepdoctection/notebooks/blob/main/Get_Started.ipynb).\n\n### Full installation\n\nThe following installation will give you ALL models available within the Deep Learning framework as well as all models\nthat are independent of Tensorflow/PyTorch.\n\n**PyTorch**\n\nFirst install **Detectron2** separately as it is not distributed via PyPi. Check the instruction\n[here](https://detectron2.readthedocs.io/en/latest/tutorials/install.html) or try:\n\n```\npip install detectron2@git+https://github.com/deepdoctection/detectron2.git\n```\n\nThen install **deep**doctection with all its dependencies:\n\n```\npip install deepdoctection[pt]\n```\n\n**Tensorflow**\n\n```\npip install deepdoctection[tf]\n```\n\n\nFor further information, please consult the [**full installation instructions**](https://deepdoctection.readthedocs.io/en/latest/install/).\n\n\n## Installation from source\n\nDownload the repository or clone via\n\n```\ngit clone https://github.com/deepdoctection/deepdoctection.git\n```\n\n**PyTorch**\n\n```\ncd deepdoctection\npip install \".[pt]\" # or \"pip install -e .[pt]\"\n```\n\n**Tensorflow**\n\n```\ncd deepdoctection\npip install \".[tf]\" # or \"pip install -e .[tf]\"\n```\n\n\n## Running a Docker container from Docker hub\n\nPre-existing Docker images can be downloaded from the [Docker hub](https://hub.docker.com/r/deepdoctection/deepdoctection).\n\n```\ndocker pull deepdoctection/deepdoctection:<release_tag> \n```\n\nUse the Docker compose file `./docker/pytorch-gpu/docker-compose.yaml`.\nIn the `.env` file provided, specify the host directory where **deep**doctection's cache should be stored.\nAdditionally, specify a working directory to mount files to be processed into the container.\n\n```\ndocker compose up -d\n```\n\nwill start the container. There is no endpoint exposed, though.\n\n-----------------------------------------------------------------------------------------------\n\n# Credits\n\nWe thank all libraries that provide high quality code and pre-trained models. Without, it would have been impossible\nto develop this framework.\n\n\n# If you like **deep**doctection ...\n\n...you can easily support the project by making it more visible. Leaving a star or a recommendation will help.\n\n# License\n\nDistributed under the Apache 2.0 License. Check [LICENSE](https://github.com/deepdoctection/deepdoctection/blob/master/LICENSE) for additional information.\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Repository for Document AI",
    "version": "0.44.0",
    "project_urls": {
        "Homepage": "https://github.com/deepdoctection/deepdoctection"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f36d936b3a00f4f5c7132de8a680451afd852a5c0e6644255ce128aa6a2402dc",
                "md5": "9d116c125f977ad0c88951b9d26d63ac",
                "sha256": "9b1991c1ec0a5bf74e294713f052a895e53b5335ab8d3bb99afa85980f71045a"
            },
            "downloads": -1,
            "filename": "deepdoctection-0.44.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9d116c125f977ad0c88951b9d26d63ac",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 474687,
            "upload_time": "2025-07-29T11:34:06",
            "upload_time_iso_8601": "2025-07-29T11:34:06.811432Z",
            "url": "https://files.pythonhosted.org/packages/f3/6d/936b3a00f4f5c7132de8a680451afd852a5c0e6644255ce128aa6a2402dc/deepdoctection-0.44.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a0a9905917080f8efccc05670a211290063ae031bb7d9a8e9547147b28921927",
                "md5": "c3a2a37f6904462db4b6ef1428fb2ce2",
                "sha256": "ad3b8c6cd62b54262c003d07c0f21596e3fbd6d7d0178beddc1b2b80eb4b5d8f"
            },
            "downloads": -1,
            "filename": "deepdoctection-0.44.0.tar.gz",
            "has_sig": false,
            "md5_digest": "c3a2a37f6904462db4b6ef1428fb2ce2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 357276,
            "upload_time": "2025-07-29T11:34:09",
            "upload_time_iso_8601": "2025-07-29T11:34:09.100135Z",
            "url": "https://files.pythonhosted.org/packages/a0/a9/905917080f8efccc05670a211290063ae031bb7d9a8e9547147b28921927/deepdoctection-0.44.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-29 11:34:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "deepdoctection",
    "github_project": "deepdoctection",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "attrs",
            "specs": [
                [
                    "==",
                    "21.4.0"
                ]
            ]
        },
        {
            "name": "catalogue",
            "specs": [
                [
                    "==",
                    "2.0.10"
                ]
            ]
        },
        {
            "name": "certifi",
            "specs": [
                [
                    "==",
                    "2021.10.8"
                ]
            ]
        },
        {
            "name": "charset-normalizer",
            "specs": [
                [
                    "==",
                    "2.0.12"
                ]
            ]
        },
        {
            "name": "filelock",
            "specs": [
                [
                    "==",
                    "3.6.0"
                ]
            ]
        },
        {
            "name": "fsspec",
            "specs": [
                [
                    "==",
                    "2023.9.2"
                ]
            ]
        },
        {
            "name": "huggingface-hub",
            "specs": [
                [
                    "==",
                    "0.28.1"
                ]
            ]
        },
        {
            "name": "idna",
            "specs": [
                [
                    "==",
                    "3.3"
                ]
            ]
        },
        {
            "name": "importlib-metadata",
            "specs": [
                [
                    "==",
                    "7.1.0"
                ]
            ]
        },
        {
            "name": "jsonlines",
            "specs": [
                [
                    "==",
                    "3.1.0"
                ]
            ]
        },
        {
            "name": "lazy-imports",
            "specs": [
                [
                    "==",
                    "0.3.1"
                ]
            ]
        },
        {
            "name": "mock",
            "specs": [
                [
                    "==",
                    "4.0.3"
                ]
            ]
        },
        {
            "name": "networkx",
            "specs": [
                [
                    "==",
                    "2.7.1"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.26.4"
                ]
            ]
        },
        {
            "name": "packaging",
            "specs": [
                [
                    "==",
                    "21.3"
                ]
            ]
        },
        {
            "name": "pillow",
            "specs": [
                [
                    "==",
                    "10.0.1"
                ]
            ]
        },
        {
            "name": "pyparsing",
            "specs": [
                [
                    "==",
                    "3.0.7"
                ]
            ]
        },
        {
            "name": "pypdf",
            "specs": [
                [
                    "==",
                    "3.17.3"
                ]
            ]
        },
        {
            "name": "pypdfium2",
            "specs": [
                [
                    "==",
                    "4.30.0"
                ]
            ]
        },
        {
            "name": "pyyaml",
            "specs": [
                [
                    "==",
                    "6.0.1"
                ]
            ]
        },
        {
            "name": "pyzmq",
            "specs": [
                [
                    "==",
                    "24.0.1"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    "==",
                    "2.27.1"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.13.1"
                ]
            ]
        },
        {
            "name": "tabulate",
            "specs": [
                [
                    "==",
                    "0.8.10"
                ]
            ]
        },
        {
            "name": "termcolor",
            "specs": [
                [
                    "==",
                    "2.0.1"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    "==",
                    "4.64.0"
                ]
            ]
        },
        {
            "name": "typing-extensions",
            "specs": [
                [
                    "==",
                    "4.1.1"
                ]
            ]
        },
        {
            "name": "urllib3",
            "specs": [
                [
                    "==",
                    "1.26.8"
                ]
            ]
        },
        {
            "name": "zipp",
            "specs": [
                [
                    "==",
                    "3.7.0"
                ]
            ]
        }
    ],
    "lcname": "deepdoctection"
}
        
Elapsed time: 1.67332s