delos-cosmos


Namedelos-cosmos JSON
Version 0.1.18 PyPI version JSON
download
home_pageNone
SummaryCosmos client.
upload_time2025-01-16 16:35:05
maintainerNone
docs_urlNone
authorMaria
requires_python<4.0,>=3.11
licenseNone
keywords ai llm generative
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Delos Cosmos

## Cosmos client for interacting with the Cosmos API.

# Installation

To install the package, use `poetry`:

```bash
poetry add delos-cosmos
```

Or if you use the default `pip`:

```bash
pip install delos-cosmos
```

# Client Initialization

You can create an **API key** to access all services through the **Dashboard** in **CosmosPlatform**
`https://platform.cosmos-suite.ai`.

![API Key creation in Cosmos Platform](https://i.ibb.co/6mvm1hQ/api-key-create.png)

To create a `Cosmos` client instance, you need to initialize it with your API key:

```python
from cosmos import CosmosClient

client = CosmosClient("your-api-key")

```

# Endpoints

This `delos-cosmos` client provides access to the following endpoints:

**Status Endpoints**

- `status_health_request`: Check the health of the server.

**Translate Endpoints**

- `translate_text_request`: Translate text.
- `translate_file_request`: Translate a file.

**Web Endpoints**

- `web_search_request`: Perform a web search.

**LLM Endpoints**

- `chat`: Chat with the LLM.
- `embed`: Embed data into the LLM.

**Files Endpoints**

A **single file** can be read and parsed with the universal parser endpoint:

- `files_parse_request`: Parse a file to extract the pages, chunks or subchunks.

An **index** groups a set of files in order to be able to query them using natural language. There are several
operations regarding **index management**:

- `files_index_create_request`: Create an index.
- `files_index_add_files_request`: Add files to an index.
- `files_index_delete_files_request`: Delete files from an index.
- `files_index_delete_request`: Delete an index.
- `files_index_restore_request`: Restore a deleted index.
- `files_index_rename_request`: Rename an index.

And regarding **index querying**

- `files_index_ask_request`: Ask a question about the index documents (it requires that your `index.status.vectorized`
  is set to `True`).
- `files_index_embed_request`: Embed or vectorize the index contents.
- `files_index_list_request`: List all indexes.
- `files_index_details_request`: Get details of an index.

These endpoints are accessible through `cosmos` client methods.

> ℹ️ **Info:** For all the **endpoints**, there are specific **parameters** that are required regarding the data to be
> sent to the API.
>
> Endpoints may expect `text` or `files` to operate with, the `output_language` for your result, the `index_uuid` that
> identifies the set of documents, the `model` to use for the LLM operations, etc.
>
> You can find the standardized parameters like the `return_type` for file translation and the `extract_type` for file
> parser in the appropiate endpoint.

---

## Status Endpoints

### Status Health Request

To **check the health** of the server and the validity of your API key:

```python
response = client.status_health_request()
if response:
    print(f"Response: {response}")
```

---

## Translate Endpoints

### 1. Translate Text Request

To **translate text**, you can use the `translate_text_request` method:

```python
response = client.translate_text_request(
                        text="Hello, world!",
                        output_language="fr"
                    )
if response:
    print(f"Translated Text: {response}")
```

### 2. Translate File Request

To **translate a file**, use the `translate_file_request` method:

```python
local_filepath_1 = Path("/path/to/file1.pdf")

response = client.translate_file_request(
                        filepath=local_filepath_1,
                        output_language="fr",
                    )
```

According to the type of file translation you prefer, you can choose the `return_type` parameter to:

| return_type        |                                                     |
| ------------------ | --------------------------------------------------- |
| raw_text `Default` | Returns the translated text only                    |
| url                | Return the translated file with its layout as a URL |
| file               | Returns a FastaAPI FileResponse type                |

> 💡 **Tip:** For faster and economical translations, set the `return_type` to `raw_text` to request to translate only
> the **text content**, without the file layout.

```python
local_filepath_1 = Path("/path/to/file1.pdf")
local_filepath_2 = Path("/path/to/file2.pdf")

# Set return_type='raw_text' -> only the translated text will be returned:
response = client.translate_file_request(
                        filepath=local_filepath_1,
                        output_language="fr",
                        return_type="raw_text"
                    )

# or return_type='url' -> returns a link to translated file with original file's layout:
response = client.translate_file_request(
                        filepath=local_filepath_2,
                        output_language="fr",
                        return_type="url"
                    )

if response:
    print(f"Translated File Response: {response}")
```

---

## Web Endpoints

### Web Search Request

To perform a **web search**:

```python
response = client.web_search_request(text="What is the capital of France?")

# Or, if you want to specify the output_language and filter results
response = client.web_search_request(
                        text="What is the capital of France?",
                        output_language="fr",
                        desired_urls=["wikipedia.fr"]
                    )
if response:
    print(f"Search Results: {response}")
```

---

## LLM Endpoints

LLM Endpoints provide a way to interact with several Large Language Models and Embedders in an unified way. Currently
supported `model`s are:

| Chat Models               | Embedding Models     |
| ------------------------- | -------------------- |
| _gpt-3.5_ `Legacy`        | **ada-v2** `Default` |
| gpt-4-turbo               |                      |
| gpt-4o                    |                      |
| **gpt-4o-mini** `Default` |                      |
| command-r                 |                      |
| command-r-plus            |                      |
| llama-3-70b-instruct      |                      |
| mistral-large             |                      |
| mistral-small             |                      |

### 1. Chat Request

To **chat** with the LLM:

```python
response = client.llm_chat_request(text="Hello, how are you?")

# Default model is handled, so that request is equivalent to:
response = client.llm_chat_request(
                        text="Hello, how are you?",
                        model="gpt-4o-mini"
                    )
if response:
    print(f"Chat Response: {response}")
```

### 2. Embed Request

To **embed** some text using a LLM:

```python
response = client.llm_embed_request(text="Hello, how are you?")
if response:
    print(f"Embed Response: {response}")
```

---

## Files Endpoints

### Universal Reader and Parser

The Universal reader and parser allows to open many textual **file** formats and extract the content in a **standarized
structure**. In order to parse a file:

```python
local_filepath_1 = Path("/path/to/file1.docx")
local_filepath_2 = Path("/path/to/file2.pdf")

response = client.files_parse_request(filepath=local_filepath_1)

if response:
    print(f"Parsed File Response: {response}")
```

Previous request can be further contolled by providing the **optional parameters**:

```python
response = client.files_parse_request(
                        filepath=local_filepath_1,
                        extract_type=chunks,
                        k_min=500,
                        k_max=1000,
                        overlap=0,
                        filter_pages="[1,2]", # subset of pages to select
                    )
if response:
    print(f"Parsed File Response: {response}")
```

| return_type      |                                                                                                            |
| ---------------- | ---------------------------------------------------------------------------------------------------------- |
| chunks `Default` | Returns the chunks of the file. You can custom its tokens size by setting `k_min`, `k_max`, `overlap`      |
| subchunks        | Returns the subchunks of the file (minimal blocks in the file, usually containing around 20 or 30 tokens). |
| pages            | Returns the content of the file parsed as pages                                                            |
| file             | Returns the the whole file contents                                                                        |

> 💡 **Tip:** When using `extract_type=chunks`, you can define the `k_min`, `k_max` and `overlap` parameters to control
> the size of the chunks. Default values are `k_min=500`, `k_max=1200`, and `overlap=0`.

### Files Index

Index group a set of files in order to be able to query them using natural language. The **Index attributes** are:

| Attributes | Meaning                                                                                                                                        |
| ---------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| index_uuid | Unique identifier of the index. It is randomly generated when the index is created and cannot be altered.                                      |
| name       | Human-friendly name for the index, can be modified through the `rename_index` endpoint.                                                        |
| created_at | Creation date                                                                                                                                  |
| updated_at | Last operation performed in index                                                                                                              |
| expires_at | Expiration date of the index. It will only be set once the `delete_index` request is explictly performed. (Default: None)                      |
| status     | Status of the index. It will be `active`, and only when programmed for deletion it will be `countdown` (2h timeout before effective deletion). |
| vectorized | Boolean status of the index. When `True`, the index is ready to be queried.                                                                    |
| files      | List of files in the index. Contains their filehash, filename and size                                                                         |
| storage    | Storage details of the index: total size in bytes and MB, number of files.                                                                     |
|            |

The following **Index operations** are available:

- `INDEX_LIST`: List all indexes.
- `INDEX_DETAILS`: Get details of an index.
- `INDEX_CREATE`: Create a new index and parse files.
- `INDEX_ADD_FILES`: Add files to an existing index.
- `INDEX_DELETE_FILES`: Delete files from an index.
- `INDEX_DELETE`: Delete an index. **Warning**: _This is a delayed (2h) operation, allowed to be reverted with
  `INDEX_RESTORE`. After 2h, the index will be **deleted and not recoverable**._
- `INDEX_RESTORE`: Restore a deleted index _(within the 2h after it was marked for deletion)_.
- `INDEX_EMBED`: Embed index contents.
- `INDEX_ASK`: Ask a question to the index. It requires that `INDEX_EMBED` is performed to allow index contents
  querying.

### Files Index Requests

#### 1. Existing Index Overview

To **list all indexes** in your organization, files included and storage details:

```python
response = client.files_index_list_request()
if response:
    print(f"List Indexes Response: {response}")
```

With **get details** of an index you can see the list of files in the index, their filehashes, their size, the `status`
of the index and the `vectorized` boolean status (find more details about the Index fields above):

```python
response = client.files_index_details_request(index_uuid="index-uuid")
if response:
    print(f"Index Details Response: {response}")
```

#### 2. Index Management

To **create a new index** and parse files, provide the list of **filepaths** you want to parse:

```python
local_filepaths = [Path("/path/to/file1.docx"), Path("/path/to/file2.pdf")]

response = client.files_index_create_request(
                        filepaths=local_filepaths,
                        name="Cooking Recipes"
                    )
if response:
    print(f"Index Create Response: {response}")
```

Let's say the new index has been created with the UUID `d55a285b-0a0d-4ba5-a918-857f63bc9063`. This UUID will be used in
the following requests, particularly in the `index_details` whenever some information about the index is needed.

You can **rename the index** with the `rename_index` method:

```python
index_uuid = "d55a285b-0a0d-4ba5-a918-857f63bc9063"
response = client.files_index_rename_request(
                        index_uuid=index_uuid,
                        name="Best Recipes"
                    )
if response:
    print(f"Rename Index Response: {response}")
```

To **add files** to an existing index, provide the list of **filepaths** you want to add:

```python
index_uuid = "d55a285b-0a0d-4ba5-a918-857f63bc9063"
local_filepath_3 = [Path("/path/to/file3.txt")]

response = client.files_index_add_files_request(
                        index_uuid=index_uuid,
                        filepaths=local_filepath_3
                    )
if response:
    print(f"Add Files to Index Response: {response}")
```

To **delete files** from an existing index, specify the **filehashes** of the files you want to delete:

```python
index_uuid = "d55a285b-0a0d-4ba5-a918-857f63bc9063"
filehashes_to_delete = ["2fa92ab4627c199a2827a363469bf4e513c67b758c34d1e316c2968ed68b9634"]

response = client.files_index_delete_files_request(
                        index_uuid=index_uuid,
                        files_hashes=filehashes_to_delete
                    )
if response:
    print(f"Delete Files from Index Response: {response}")
```

To **delete an index** (it will be marked for deletion which will become effective **after 2h**):

```python
response = client.files_index_delete_request(index_uuid="index-to-delete-uuid")
if response:
    print(f"Delete Index Response: {response}")
```

To **restore an index** marked for deletion (only possible during the 2h after the `INDEX_DELETE` was requested):

```python
response = client.files_index_restore_request(index_uuid="index-to-restore-uuid")
if response:
    print(f"Restore Index Response: {response}")
```

#### 3. Index Querying

To **embed** or **vectorize index contents** in order to allow the query operations:

```python
response = client.files_index_embed_request(index_uuid="index-uuid")
if response:
    print(f"Embed Index Response: {response}")
```

To **ask a question** about the index documents (it requires that your `index.status.vectorized` is set to `True`):

```python
response = client.files_index_ask_request(
                        index_uuid="index-uuid",
                        question="What is Cosmos?"
                    )
if response:
    print(f"Ask Index Response: {response}")
```

## Requests Usage and Storage

All request responses show the **number of tokens** and **cost** consumed by the request. The **storage** for index
documents is **limited** up to your organization's quota and is shared between all indexes within your organization.
Contents **do not expire**, but they can be deleted by performing an explicit request through the API endpoints or
through the **CosmosPlatform** at `https://platform.cosmos-suite.ai/`.

In the **CosmosPlatform**, you can monitor the requests performed by your organization with your API Key and the files
stored in the Index Storage.

![API key usage in Cosmos Platform](https://i.ibb.co/VTD35z1/api-key-usage.png)

Through both the native requests towards Cosmos and the Python client, you can handle and delete files directly from the
Cosmos Platform.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "delos-cosmos",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.11",
    "maintainer_email": null,
    "keywords": "AI, LLM, generative",
    "author": "Maria",
    "author_email": "mariaibanez@delosintelligence.fr",
    "download_url": "https://files.pythonhosted.org/packages/2d/39/69a3f2ff0b04c5d34fe0b56479666e7f095789efd6771e22728d193c28c5/delos_cosmos-0.1.18.tar.gz",
    "platform": null,
    "description": "# Delos Cosmos\n\n## Cosmos client for interacting with the Cosmos API.\n\n# Installation\n\nTo install the package, use `poetry`:\n\n```bash\npoetry add delos-cosmos\n```\n\nOr if you use the default `pip`:\n\n```bash\npip install delos-cosmos\n```\n\n# Client Initialization\n\nYou can create an **API key** to access all services through the **Dashboard** in **CosmosPlatform**\n`https://platform.cosmos-suite.ai`.\n\n![API Key creation in Cosmos Platform](https://i.ibb.co/6mvm1hQ/api-key-create.png)\n\nTo create a `Cosmos` client instance, you need to initialize it with your API key:\n\n```python\nfrom cosmos import CosmosClient\n\nclient = CosmosClient(\"your-api-key\")\n\n```\n\n# Endpoints\n\nThis `delos-cosmos` client provides access to the following endpoints:\n\n**Status Endpoints**\n\n- `status_health_request`: Check the health of the server.\n\n**Translate Endpoints**\n\n- `translate_text_request`: Translate text.\n- `translate_file_request`: Translate a file.\n\n**Web Endpoints**\n\n- `web_search_request`: Perform a web search.\n\n**LLM Endpoints**\n\n- `chat`: Chat with the LLM.\n- `embed`: Embed data into the LLM.\n\n**Files Endpoints**\n\nA **single file** can be read and parsed with the universal parser endpoint:\n\n- `files_parse_request`: Parse a file to extract the pages, chunks or subchunks.\n\nAn **index** groups a set of files in order to be able to query them using natural language. There are several\noperations regarding **index management**:\n\n- `files_index_create_request`: Create an index.\n- `files_index_add_files_request`: Add files to an index.\n- `files_index_delete_files_request`: Delete files from an index.\n- `files_index_delete_request`: Delete an index.\n- `files_index_restore_request`: Restore a deleted index.\n- `files_index_rename_request`: Rename an index.\n\nAnd regarding **index querying**\n\n- `files_index_ask_request`: Ask a question about the index documents (it requires that your `index.status.vectorized`\n  is set to `True`).\n- `files_index_embed_request`: Embed or vectorize the index contents.\n- `files_index_list_request`: List all indexes.\n- `files_index_details_request`: Get details of an index.\n\nThese endpoints are accessible through `cosmos` client methods.\n\n> \u2139\ufe0f **Info:** For all the **endpoints**, there are specific **parameters** that are required regarding the data to be\n> sent to the API.\n>\n> Endpoints may expect `text` or `files` to operate with, the `output_language` for your result, the `index_uuid` that\n> identifies the set of documents, the `model` to use for the LLM operations, etc.\n>\n> You can find the standardized parameters like the `return_type` for file translation and the `extract_type` for file\n> parser in the appropiate endpoint.\n\n---\n\n## Status Endpoints\n\n### Status Health Request\n\nTo **check the health** of the server and the validity of your API key:\n\n```python\nresponse = client.status_health_request()\nif response:\n    print(f\"Response: {response}\")\n```\n\n---\n\n## Translate Endpoints\n\n### 1. Translate Text Request\n\nTo **translate text**, you can use the `translate_text_request` method:\n\n```python\nresponse = client.translate_text_request(\n                        text=\"Hello, world!\",\n                        output_language=\"fr\"\n                    )\nif response:\n    print(f\"Translated Text: {response}\")\n```\n\n### 2. Translate File Request\n\nTo **translate a file**, use the `translate_file_request` method:\n\n```python\nlocal_filepath_1 = Path(\"/path/to/file1.pdf\")\n\nresponse = client.translate_file_request(\n                        filepath=local_filepath_1,\n                        output_language=\"fr\",\n                    )\n```\n\nAccording to the type of file translation you prefer, you can choose the `return_type` parameter to:\n\n| return_type        |                                                     |\n| ------------------ | --------------------------------------------------- |\n| raw_text `Default` | Returns the translated text only                    |\n| url                | Return the translated file with its layout as a URL |\n| file               | Returns a FastaAPI FileResponse type                |\n\n> \ud83d\udca1 **Tip:** For faster and economical translations, set the `return_type` to `raw_text` to request to translate only\n> the **text content**, without the file layout.\n\n```python\nlocal_filepath_1 = Path(\"/path/to/file1.pdf\")\nlocal_filepath_2 = Path(\"/path/to/file2.pdf\")\n\n# Set return_type='raw_text' -> only the translated text will be returned:\nresponse = client.translate_file_request(\n                        filepath=local_filepath_1,\n                        output_language=\"fr\",\n                        return_type=\"raw_text\"\n                    )\n\n# or return_type='url' -> returns a link to translated file with original file's layout:\nresponse = client.translate_file_request(\n                        filepath=local_filepath_2,\n                        output_language=\"fr\",\n                        return_type=\"url\"\n                    )\n\nif response:\n    print(f\"Translated File Response: {response}\")\n```\n\n---\n\n## Web Endpoints\n\n### Web Search Request\n\nTo perform a **web search**:\n\n```python\nresponse = client.web_search_request(text=\"What is the capital of France?\")\n\n# Or, if you want to specify the output_language and filter results\nresponse = client.web_search_request(\n                        text=\"What is the capital of France?\",\n                        output_language=\"fr\",\n                        desired_urls=[\"wikipedia.fr\"]\n                    )\nif response:\n    print(f\"Search Results: {response}\")\n```\n\n---\n\n## LLM Endpoints\n\nLLM Endpoints provide a way to interact with several Large Language Models and Embedders in an unified way. Currently\nsupported `model`s are:\n\n| Chat Models               | Embedding Models     |\n| ------------------------- | -------------------- |\n| _gpt-3.5_ `Legacy`        | **ada-v2** `Default` |\n| gpt-4-turbo               |                      |\n| gpt-4o                    |                      |\n| **gpt-4o-mini** `Default` |                      |\n| command-r                 |                      |\n| command-r-plus            |                      |\n| llama-3-70b-instruct      |                      |\n| mistral-large             |                      |\n| mistral-small             |                      |\n\n### 1. Chat Request\n\nTo **chat** with the LLM:\n\n```python\nresponse = client.llm_chat_request(text=\"Hello, how are you?\")\n\n# Default model is handled, so that request is equivalent to:\nresponse = client.llm_chat_request(\n                        text=\"Hello, how are you?\",\n                        model=\"gpt-4o-mini\"\n                    )\nif response:\n    print(f\"Chat Response: {response}\")\n```\n\n### 2. Embed Request\n\nTo **embed** some text using a LLM:\n\n```python\nresponse = client.llm_embed_request(text=\"Hello, how are you?\")\nif response:\n    print(f\"Embed Response: {response}\")\n```\n\n---\n\n## Files Endpoints\n\n### Universal Reader and Parser\n\nThe Universal reader and parser allows to open many textual **file** formats and extract the content in a **standarized\nstructure**. In order to parse a file:\n\n```python\nlocal_filepath_1 = Path(\"/path/to/file1.docx\")\nlocal_filepath_2 = Path(\"/path/to/file2.pdf\")\n\nresponse = client.files_parse_request(filepath=local_filepath_1)\n\nif response:\n    print(f\"Parsed File Response: {response}\")\n```\n\nPrevious request can be further contolled by providing the **optional parameters**:\n\n```python\nresponse = client.files_parse_request(\n                        filepath=local_filepath_1,\n                        extract_type=chunks,\n                        k_min=500,\n                        k_max=1000,\n                        overlap=0,\n                        filter_pages=\"[1,2]\", # subset of pages to select\n                    )\nif response:\n    print(f\"Parsed File Response: {response}\")\n```\n\n| return_type      |                                                                                                            |\n| ---------------- | ---------------------------------------------------------------------------------------------------------- |\n| chunks `Default` | Returns the chunks of the file. You can custom its tokens size by setting `k_min`, `k_max`, `overlap`      |\n| subchunks        | Returns the subchunks of the file (minimal blocks in the file, usually containing around 20 or 30 tokens). |\n| pages            | Returns the content of the file parsed as pages                                                            |\n| file             | Returns the the whole file contents                                                                        |\n\n> \ud83d\udca1 **Tip:** When using `extract_type=chunks`, you can define the `k_min`, `k_max` and `overlap` parameters to control\n> the size of the chunks. Default values are `k_min=500`, `k_max=1200`, and `overlap=0`.\n\n### Files Index\n\nIndex group a set of files in order to be able to query them using natural language. The **Index attributes** are:\n\n| Attributes | Meaning                                                                                                                                        |\n| ---------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |\n| index_uuid | Unique identifier of the index. It is randomly generated when the index is created and cannot be altered.                                      |\n| name       | Human-friendly name for the index, can be modified through the `rename_index` endpoint.                                                        |\n| created_at | Creation date                                                                                                                                  |\n| updated_at | Last operation performed in index                                                                                                              |\n| expires_at | Expiration date of the index. It will only be set once the `delete_index` request is explictly performed. (Default: None)                      |\n| status     | Status of the index. It will be `active`, and only when programmed for deletion it will be `countdown` (2h timeout before effective deletion). |\n| vectorized | Boolean status of the index. When `True`, the index is ready to be queried.                                                                    |\n| files      | List of files in the index. Contains their filehash, filename and size                                                                         |\n| storage    | Storage details of the index: total size in bytes and MB, number of files.                                                                     |\n|            |\n\nThe following **Index operations** are available:\n\n- `INDEX_LIST`: List all indexes.\n- `INDEX_DETAILS`: Get details of an index.\n- `INDEX_CREATE`: Create a new index and parse files.\n- `INDEX_ADD_FILES`: Add files to an existing index.\n- `INDEX_DELETE_FILES`: Delete files from an index.\n- `INDEX_DELETE`: Delete an index. **Warning**: _This is a delayed (2h) operation, allowed to be reverted with\n  `INDEX_RESTORE`. After 2h, the index will be **deleted and not recoverable**._\n- `INDEX_RESTORE`: Restore a deleted index _(within the 2h after it was marked for deletion)_.\n- `INDEX_EMBED`: Embed index contents.\n- `INDEX_ASK`: Ask a question to the index. It requires that `INDEX_EMBED` is performed to allow index contents\n  querying.\n\n### Files Index Requests\n\n#### 1. Existing Index Overview\n\nTo **list all indexes** in your organization, files included and storage details:\n\n```python\nresponse = client.files_index_list_request()\nif response:\n    print(f\"List Indexes Response: {response}\")\n```\n\nWith **get details** of an index you can see the list of files in the index, their filehashes, their size, the `status`\nof the index and the `vectorized` boolean status (find more details about the Index fields above):\n\n```python\nresponse = client.files_index_details_request(index_uuid=\"index-uuid\")\nif response:\n    print(f\"Index Details Response: {response}\")\n```\n\n#### 2. Index Management\n\nTo **create a new index** and parse files, provide the list of **filepaths** you want to parse:\n\n```python\nlocal_filepaths = [Path(\"/path/to/file1.docx\"), Path(\"/path/to/file2.pdf\")]\n\nresponse = client.files_index_create_request(\n                        filepaths=local_filepaths,\n                        name=\"Cooking Recipes\"\n                    )\nif response:\n    print(f\"Index Create Response: {response}\")\n```\n\nLet's say the new index has been created with the UUID `d55a285b-0a0d-4ba5-a918-857f63bc9063`. This UUID will be used in\nthe following requests, particularly in the `index_details` whenever some information about the index is needed.\n\nYou can **rename the index** with the `rename_index` method:\n\n```python\nindex_uuid = \"d55a285b-0a0d-4ba5-a918-857f63bc9063\"\nresponse = client.files_index_rename_request(\n                        index_uuid=index_uuid,\n                        name=\"Best Recipes\"\n                    )\nif response:\n    print(f\"Rename Index Response: {response}\")\n```\n\nTo **add files** to an existing index, provide the list of **filepaths** you want to add:\n\n```python\nindex_uuid = \"d55a285b-0a0d-4ba5-a918-857f63bc9063\"\nlocal_filepath_3 = [Path(\"/path/to/file3.txt\")]\n\nresponse = client.files_index_add_files_request(\n                        index_uuid=index_uuid,\n                        filepaths=local_filepath_3\n                    )\nif response:\n    print(f\"Add Files to Index Response: {response}\")\n```\n\nTo **delete files** from an existing index, specify the **filehashes** of the files you want to delete:\n\n```python\nindex_uuid = \"d55a285b-0a0d-4ba5-a918-857f63bc9063\"\nfilehashes_to_delete = [\"2fa92ab4627c199a2827a363469bf4e513c67b758c34d1e316c2968ed68b9634\"]\n\nresponse = client.files_index_delete_files_request(\n                        index_uuid=index_uuid,\n                        files_hashes=filehashes_to_delete\n                    )\nif response:\n    print(f\"Delete Files from Index Response: {response}\")\n```\n\nTo **delete an index** (it will be marked for deletion which will become effective **after 2h**):\n\n```python\nresponse = client.files_index_delete_request(index_uuid=\"index-to-delete-uuid\")\nif response:\n    print(f\"Delete Index Response: {response}\")\n```\n\nTo **restore an index** marked for deletion (only possible during the 2h after the `INDEX_DELETE` was requested):\n\n```python\nresponse = client.files_index_restore_request(index_uuid=\"index-to-restore-uuid\")\nif response:\n    print(f\"Restore Index Response: {response}\")\n```\n\n#### 3. Index Querying\n\nTo **embed** or **vectorize index contents** in order to allow the query operations:\n\n```python\nresponse = client.files_index_embed_request(index_uuid=\"index-uuid\")\nif response:\n    print(f\"Embed Index Response: {response}\")\n```\n\nTo **ask a question** about the index documents (it requires that your `index.status.vectorized` is set to `True`):\n\n```python\nresponse = client.files_index_ask_request(\n                        index_uuid=\"index-uuid\",\n                        question=\"What is Cosmos?\"\n                    )\nif response:\n    print(f\"Ask Index Response: {response}\")\n```\n\n## Requests Usage and Storage\n\nAll request responses show the **number of tokens** and **cost** consumed by the request. The **storage** for index\ndocuments is **limited** up to your organization's quota and is shared between all indexes within your organization.\nContents **do not expire**, but they can be deleted by performing an explicit request through the API endpoints or\nthrough the **CosmosPlatform** at `https://platform.cosmos-suite.ai/`.\n\nIn the **CosmosPlatform**, you can monitor the requests performed by your organization with your API Key and the files\nstored in the Index Storage.\n\n![API key usage in Cosmos Platform](https://i.ibb.co/VTD35z1/api-key-usage.png)\n\nThrough both the native requests towards Cosmos and the Python client, you can handle and delete files directly from the\nCosmos Platform.\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Cosmos client.",
    "version": "0.1.18",
    "project_urls": null,
    "split_keywords": [
        "ai",
        " llm",
        " generative"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2841f95b7b3498116b49887fd85c63d3c5f24b383174f32195e126c9ea49d820",
                "md5": "4938b8d32954d232e936623622e606f3",
                "sha256": "6f4db1379c65b2030d1984064d9ba316b4d862b6b4205a757f512941e626bfc2"
            },
            "downloads": -1,
            "filename": "delos_cosmos-0.1.18-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4938b8d32954d232e936623622e606f3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.11",
            "size": 14335,
            "upload_time": "2025-01-16T16:35:03",
            "upload_time_iso_8601": "2025-01-16T16:35:03.539104Z",
            "url": "https://files.pythonhosted.org/packages/28/41/f95b7b3498116b49887fd85c63d3c5f24b383174f32195e126c9ea49d820/delos_cosmos-0.1.18-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2d3969a3f2ff0b04c5d34fe0b56479666e7f095789efd6771e22728d193c28c5",
                "md5": "dce77991eb2789cc7f8c3e94b60feb5d",
                "sha256": "7ef31a4c49521d6835fae13ab60165ed0f80737b60e22b3ee4fa68f7ac96f286"
            },
            "downloads": -1,
            "filename": "delos_cosmos-0.1.18.tar.gz",
            "has_sig": false,
            "md5_digest": "dce77991eb2789cc7f8c3e94b60feb5d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.11",
            "size": 17196,
            "upload_time": "2025-01-16T16:35:05",
            "upload_time_iso_8601": "2025-01-16T16:35:05.280813Z",
            "url": "https://files.pythonhosted.org/packages/2d/39/69a3f2ff0b04c5d34fe0b56479666e7f095789efd6771e22728d193c28c5/delos_cosmos-0.1.18.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-16 16:35:05",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "delos-cosmos"
}
        
Elapsed time: 0.42386s