delos-llmax


Namedelos-llmax JSON
Version 0.11.3 PyPI version JSON
download
home_pageNone
SummaryInterface to handle multiple LLMs and AI tools.
upload_time2024-10-11 15:40:54
maintainerNone
docs_urlNone
authorDelos Intelligence
requires_python<4.0,>=3.8.1
licenseNone
keywords ai llm generative
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # llmax

Python package to manage most external and internal LLM APIs fluently.


# Installation

To install, run the following command:

```bash
python3 -m pip install delos-llmax
```

# How to use

You first have to define a list of `Deployment` as such, where you need to specify the endpoints, key and deployment_name. Then create the client:

```python
from llmax.clients import MultiAIClient
from llmax.models import Deployment, Model

deployments: dict[Model, Deployment] = {
        "gpt-4o": Deployment(
            model="gpt-4o",
            provider="azure",
            deployment_name="gpt-4o-2024-05-13",
            api_key=os.getenv("LLMAX_AZURE_OPENAI_SWEDENCENTRAL_KEY", ""),
            endpoint=os.getenv("LLMAX_AZURE_OPENAI_SWEDENCENTRAL_ENDPOINT", ""),
        ),
        "whisper-1": Deployment(
            model="whisper-1",
            provider="azure",
            deployment_name="whisper-1",
            api_key=os.getenv("LLMAX_AZURE_OPENAI_SWEDENCENTRAL_KEY", ""),
            endpoint=os.getenv("LLMAX_AZURE_OPENAI_SWEDENCENTRAL_ENDPOINT", ""),
            api_version="2024-02-01",
        ),
    }

client = MultiAIClient(
        deployments=deployments,
    )
```

Then you should define your input (that can be a text, image or audio, following the openai documentation for instance).

```python
messages = [
        {"role": "user", "content": "Raconte moi une blague."},
    ]
```

And finally get the response:

```python
response = client.invoke_to_str(messages, model)
print(response)
```

# Specificities

When creating the client, you can also specify two functions, *increment_usage* and *get_usage*.
The first one is **Callable[[float, Model], bool]** while the second is **Callable[[], float]**.
*increment_usage* is a function that is called after a call of the llm. The float is the price and Model, the model used. It can therefore be used to update your database. *get_usage* returns whether a condition is met. For instance, it can be a function that calls your database and returns whether the user is still active.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "delos-llmax",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.8.1",
    "maintainer_email": null,
    "keywords": "AI, LLM, generative",
    "author": "Delos Intelligence",
    "author_email": "maximiliendedinechin@delosintelligence.fr",
    "download_url": "https://files.pythonhosted.org/packages/98/c8/73429b4aeeee24c6c2f57b0ce122c0e50f3de3d9bfe91854758aae7748f8/delos_llmax-0.11.3.tar.gz",
    "platform": null,
    "description": "# llmax\n\nPython package to manage most external and internal LLM APIs fluently.\n\n\n# Installation\n\nTo install, run the following command:\n\n```bash\npython3 -m pip install delos-llmax\n```\n\n# How to use\n\nYou first have to define a list of `Deployment` as such, where you need to specify the endpoints, key and deployment_name. Then create the client:\n\n```python\nfrom llmax.clients import MultiAIClient\nfrom llmax.models import Deployment, Model\n\ndeployments: dict[Model, Deployment] = {\n        \"gpt-4o\": Deployment(\n            model=\"gpt-4o\",\n            provider=\"azure\",\n            deployment_name=\"gpt-4o-2024-05-13\",\n            api_key=os.getenv(\"LLMAX_AZURE_OPENAI_SWEDENCENTRAL_KEY\", \"\"),\n            endpoint=os.getenv(\"LLMAX_AZURE_OPENAI_SWEDENCENTRAL_ENDPOINT\", \"\"),\n        ),\n        \"whisper-1\": Deployment(\n            model=\"whisper-1\",\n            provider=\"azure\",\n            deployment_name=\"whisper-1\",\n            api_key=os.getenv(\"LLMAX_AZURE_OPENAI_SWEDENCENTRAL_KEY\", \"\"),\n            endpoint=os.getenv(\"LLMAX_AZURE_OPENAI_SWEDENCENTRAL_ENDPOINT\", \"\"),\n            api_version=\"2024-02-01\",\n        ),\n    }\n\nclient = MultiAIClient(\n        deployments=deployments,\n    )\n```\n\nThen you should define your input (that can be a text, image or audio, following the openai documentation for instance).\n\n```python\nmessages = [\n        {\"role\": \"user\", \"content\": \"Raconte moi une blague.\"},\n    ]\n```\n\nAnd finally get the response:\n\n```python\nresponse = client.invoke_to_str(messages, model)\nprint(response)\n```\n\n# Specificities\n\nWhen creating the client, you can also specify two functions, *increment_usage* and *get_usage*.\nThe first one is **Callable[[float, Model], bool]** while the second is **Callable[[], float]**.\n*increment_usage* is a function that is called after a call of the llm. The float is the price and Model, the model used. It can therefore be used to update your database. *get_usage* returns whether a condition is met. For instance, it can be a function that calls your database and returns whether the user is still active.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Interface to handle multiple LLMs and AI tools.",
    "version": "0.11.3",
    "project_urls": null,
    "split_keywords": [
        "ai",
        " llm",
        " generative"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ac5147c4375cdfcae0fe7eaef8a0a3e71e556b68185caebd229953d3b1750824",
                "md5": "86c5523b2ae5ad6de174adb299e0fccc",
                "sha256": "975502a5a5a1585296e6fd0076c8040fcd9f0b9c917ca3ed90c356e5252b60b2"
            },
            "downloads": -1,
            "filename": "delos_llmax-0.11.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "86c5523b2ae5ad6de174adb299e0fccc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8.1",
            "size": 18091,
            "upload_time": "2024-10-11T15:40:52",
            "upload_time_iso_8601": "2024-10-11T15:40:52.915280Z",
            "url": "https://files.pythonhosted.org/packages/ac/51/47c4375cdfcae0fe7eaef8a0a3e71e556b68185caebd229953d3b1750824/delos_llmax-0.11.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "98c873429b4aeeee24c6c2f57b0ce122c0e50f3de3d9bfe91854758aae7748f8",
                "md5": "efbbd913165e7211b6cfab1812c6e481",
                "sha256": "6a28ceb479d003bf532240ad47542f70885283c6d00b219f16de6e35af149c7e"
            },
            "downloads": -1,
            "filename": "delos_llmax-0.11.3.tar.gz",
            "has_sig": false,
            "md5_digest": "efbbd913165e7211b6cfab1812c6e481",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.8.1",
            "size": 12894,
            "upload_time": "2024-10-11T15:40:54",
            "upload_time_iso_8601": "2024-10-11T15:40:54.540931Z",
            "url": "https://files.pythonhosted.org/packages/98/c8/73429b4aeeee24c6c2f57b0ce122c0e50f3de3d9bfe91854758aae7748f8/delos_llmax-0.11.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-11 15:40:54",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "delos-llmax"
}
        
Elapsed time: 0.36389s