demiurg


Namedemiurg JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryAI Agent Framework for building intelligent agents with multiple LLM providers
upload_time2025-07-14 18:45:04
maintainerNone
docs_urlNone
authorDemiurg AI
requires_python<4.0,>=3.9
licenseProprietary
keywords ai agents llm openai chatbot
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Demiurg

A flexible AI agent framework for building intelligent agents with support for multiple LLM providers.

## Features

- 🚀 Simple, minimal API for quick agent creation
- 🔌 Support for multiple LLM providers (OpenAI, Anthropic, Google, etc.)
- 📬 Built-in messaging system with conversation history
- 📁 File handling capabilities (images, audio, text)
- 🔧 Extensible tool system with Composio integration
- 🏗️ Production-ready with built-in queue management
- 🐳 Designed for both cloud and local container deployment

## Installation

```bash
pip install demiurg
```

## Quick Start

```python
from demiurg import Agent

# Create an agent with default configuration
agent = Agent()

# Or customize your agent
agent = Agent(
    name="My Custom Agent",
    model="gpt-4",
    temperature=0.7,
    provider="openai"
)
```

## Basic Usage

### Sending Messages

```python
from demiurg import send_text, send_file

# Send a text message
await send_text(conversation_id, "Hello from my agent!")

# Send a file
await send_file(conversation_id, "/path/to/file.png", caption="Check this out!")
```

### Getting Conversation History

```python
from demiurg import get_conversation_history

# Get formatted conversation history
messages = await get_conversation_history(
    conversation_id,
    limit=50,
    provider="openai"  # Format for specific LLM provider
)
```

### Custom Agent Implementation

```python
from demiurg import Agent

class MyAgent(Agent):
    def __init__(self):
        super().__init__(
            name="Helpful Assistant",
            model="gpt-4",
            system_prompt="You are a helpful AI assistant."
        )
    
    async def process_message(self, message, provider="openai"):
        # Add custom logic here
        response = await super().process_message(message, provider)
        return response

agent = MyAgent()
```

## Environment Variables

The framework uses environment variables for configuration:

- `DEMIURG_BACKEND_URL`: Backend API URL (default: `http://backend:3000`)
- `DEMIURG_AGENT_TOKEN`: Authentication token
- `DEMIURG_AGENT_ID`: Unique agent identifier
- `OPENAI_API_KEY`: OpenAI API key (for OpenAI provider)
- `COMPOSIO_API_KEY`: Composio API key (for tool integration)

## Provider Support

Currently supported:
- ✅ OpenAI (GPT-3.5, GPT-4, etc.)

Coming soon:
- 🚧 Anthropic (Claude)
- 🚧 Google (Gemini)
- 🚧 Cohere
- 🚧 Local models

## Development

For development access and contribution guidelines, please contact support@demiurg.ai.

## License

Copyright © 2024 Demiurg AI. All rights reserved.

This is proprietary software. See LICENSE file for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "demiurg",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "ai, agents, llm, openai, chatbot",
    "author": "Demiurg AI",
    "author_email": "support@demiurg.ai",
    "download_url": "https://files.pythonhosted.org/packages/ce/e0/cfb8f776ffb6fa605fdca62758d5bc3eb91314f427b9155ffaf5f7cfaf15/demiurg-0.1.1.tar.gz",
    "platform": null,
    "description": "# Demiurg\n\nA flexible AI agent framework for building intelligent agents with support for multiple LLM providers.\n\n## Features\n\n- \ud83d\ude80 Simple, minimal API for quick agent creation\n- \ud83d\udd0c Support for multiple LLM providers (OpenAI, Anthropic, Google, etc.)\n- \ud83d\udcec Built-in messaging system with conversation history\n- \ud83d\udcc1 File handling capabilities (images, audio, text)\n- \ud83d\udd27 Extensible tool system with Composio integration\n- \ud83c\udfd7\ufe0f Production-ready with built-in queue management\n- \ud83d\udc33 Designed for both cloud and local container deployment\n\n## Installation\n\n```bash\npip install demiurg\n```\n\n## Quick Start\n\n```python\nfrom demiurg import Agent\n\n# Create an agent with default configuration\nagent = Agent()\n\n# Or customize your agent\nagent = Agent(\n    name=\"My Custom Agent\",\n    model=\"gpt-4\",\n    temperature=0.7,\n    provider=\"openai\"\n)\n```\n\n## Basic Usage\n\n### Sending Messages\n\n```python\nfrom demiurg import send_text, send_file\n\n# Send a text message\nawait send_text(conversation_id, \"Hello from my agent!\")\n\n# Send a file\nawait send_file(conversation_id, \"/path/to/file.png\", caption=\"Check this out!\")\n```\n\n### Getting Conversation History\n\n```python\nfrom demiurg import get_conversation_history\n\n# Get formatted conversation history\nmessages = await get_conversation_history(\n    conversation_id,\n    limit=50,\n    provider=\"openai\"  # Format for specific LLM provider\n)\n```\n\n### Custom Agent Implementation\n\n```python\nfrom demiurg import Agent\n\nclass MyAgent(Agent):\n    def __init__(self):\n        super().__init__(\n            name=\"Helpful Assistant\",\n            model=\"gpt-4\",\n            system_prompt=\"You are a helpful AI assistant.\"\n        )\n    \n    async def process_message(self, message, provider=\"openai\"):\n        # Add custom logic here\n        response = await super().process_message(message, provider)\n        return response\n\nagent = MyAgent()\n```\n\n## Environment Variables\n\nThe framework uses environment variables for configuration:\n\n- `DEMIURG_BACKEND_URL`: Backend API URL (default: `http://backend:3000`)\n- `DEMIURG_AGENT_TOKEN`: Authentication token\n- `DEMIURG_AGENT_ID`: Unique agent identifier\n- `OPENAI_API_KEY`: OpenAI API key (for OpenAI provider)\n- `COMPOSIO_API_KEY`: Composio API key (for tool integration)\n\n## Provider Support\n\nCurrently supported:\n- \u2705 OpenAI (GPT-3.5, GPT-4, etc.)\n\nComing soon:\n- \ud83d\udea7 Anthropic (Claude)\n- \ud83d\udea7 Google (Gemini)\n- \ud83d\udea7 Cohere\n- \ud83d\udea7 Local models\n\n## Development\n\nFor development access and contribution guidelines, please contact support@demiurg.ai.\n\n## License\n\nCopyright \u00a9 2024 Demiurg AI. All rights reserved.\n\nThis is proprietary software. See LICENSE file for details.\n",
    "bugtrack_url": null,
    "license": "Proprietary",
    "summary": "AI Agent Framework for building intelligent agents with multiple LLM providers",
    "version": "0.1.1",
    "project_urls": {
        "Documentation": "https://docs.demiurg.ai",
        "Homepage": "https://demiurg.ai"
    },
    "split_keywords": [
        "ai",
        " agents",
        " llm",
        " openai",
        " chatbot"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1e8f635320df6d0d9f39af1d48e1bf9f18eedf1fff88613cdd8d4ed46a212a4c",
                "md5": "82c76c464b8f7587bbe42ad97b1be1b8",
                "sha256": "5a9491df8a41c88fe31cbed1c8c58654b3159b8eb971e7d36a21d32ee560af4f"
            },
            "downloads": -1,
            "filename": "demiurg-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "82c76c464b8f7587bbe42ad97b1be1b8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 23300,
            "upload_time": "2025-07-14T18:45:02",
            "upload_time_iso_8601": "2025-07-14T18:45:02.944152Z",
            "url": "https://files.pythonhosted.org/packages/1e/8f/635320df6d0d9f39af1d48e1bf9f18eedf1fff88613cdd8d4ed46a212a4c/demiurg-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "cee0cfb8f776ffb6fa605fdca62758d5bc3eb91314f427b9155ffaf5f7cfaf15",
                "md5": "7dc6d7d0cf7d94f70704b0d4a909ea7c",
                "sha256": "9cba086b08f987d8d6f054be3252178306281d336a49ff3c307670cb24bf5324"
            },
            "downloads": -1,
            "filename": "demiurg-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "7dc6d7d0cf7d94f70704b0d4a909ea7c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 18711,
            "upload_time": "2025-07-14T18:45:04",
            "upload_time_iso_8601": "2025-07-14T18:45:04.209506Z",
            "url": "https://files.pythonhosted.org/packages/ce/e0/cfb8f776ffb6fa605fdca62758d5bc3eb91314f427b9155ffaf5f7cfaf15/demiurg-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-14 18:45:04",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "demiurg"
}
        
Elapsed time: 0.68529s