discern-xai


Namediscern-xai JSON
Version 0.0.25 PyPI version JSON
download
home_pagehttps://github.com/RGU-Computing/discern-xai
SummaryDisCERN: Discovering Counterfactual Explanations using Relevance Features from Neighbourhoods
upload_time2022-12-10 20:45:12
maintainer
docs_urlNone
authorAnjana Wijekoon
requires_python
license
keywords machine-learning explanation interpretability counterfactual
VCS
bugtrack_url
requirements numpy pandas scikit-learn heapq tqdm lime
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DisCERN-XAI
DisCERN: Discovering Counterfactual Explanations using Relevance Features from Neighbourhoods

### Installing DisCERN
DisCERN supports Python 3+. The stable version of DisCERN is available on [PyPI](https://pypi.org/project/discern-xai/):

    pip install discern-xai

To install the dev version of DisCERN and its dependencies, clone this repo and run `pip install` from the top-most folder of the repo:

    pip install -e .

DisCERN requires the following packages:<br>
`numpy`<br>
`pandas`<br>
`lime`<br>
`shap`<br>
`scikit-learn`


### Getting Started with DisCERN

Binary Classification example using the Adult Income dataset and RandomForest classifier is in tests/test_adult_income.py

Multi-class Classification example using the Cancer risk dataset and RandomForest classifier is in tests/test_cancer_risk.py

### Citing

Please cite it as follows:

Nirmalie Wiratunga and Anjana Wijekoon and Ikechukwu Nkisi-Orji and Kyle Martin and Chamath Palihawadana and David Corsar (2021). DisCERN:Discovering Counterfactual Explanations using Relevance Features from Neighbourhoods. ArXiv,  vol. abs/2109.05800


Bibtex:

    @misc{wiratunga2021discerndiscovering,
      title={DisCERN:Discovering Counterfactual Explanations using Relevance Features from Neighbourhoods}, 
      author={Nirmalie Wiratunga and Anjana Wijekoon and Ikechukwu Nkisi-Orji and Kyle Martin and Chamath Palihawadana and David Corsar},
      year={2021},
      eprint={2109.05800},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}


<br>
<br>
<br>
<br>

<img align="left" src="isee.png" alt="drawing" height="50"/>
<img align="right" src="chistera.png" alt="drawing" height="50"/><br><br><br>
<center>This research is funded by the <a href="https://isee4xai.com">iSee project</a> which received funding from EPSRC under the grant number EP/V061755/1. iSee is part of the <a href="https://www.chistera.eu/">CHIST-ERA pathfinder programme</a> for European coordinated research on future and emerging information and communication technologies.</center>




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/RGU-Computing/discern-xai",
    "name": "discern-xai",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "machine-learning explanation interpretability counterfactual",
    "author": "Anjana Wijekoon",
    "author_email": "a.wijekoon1@rgu.ac.uk",
    "download_url": "https://files.pythonhosted.org/packages/16/0c/0bf7bf8d8ab1f442fb93e08052f79859265dff06cb0729b60d80eaab7130/discern-xai-0.0.25.tar.gz",
    "platform": null,
    "description": "# DisCERN-XAI\nDisCERN: Discovering Counterfactual Explanations using Relevance Features from Neighbourhoods\n\n### Installing DisCERN\nDisCERN supports Python 3+. The stable version of DisCERN is available on [PyPI](https://pypi.org/project/discern-xai/):\n\n    pip install discern-xai\n\nTo install the dev version of DisCERN and its dependencies, clone this repo and run `pip install` from the top-most folder of the repo:\n\n    pip install -e .\n\nDisCERN requires the following packages:<br>\n`numpy`<br>\n`pandas`<br>\n`lime`<br>\n`shap`<br>\n`scikit-learn`\n\n\n### Getting Started with DisCERN\n\nBinary Classification example using the Adult Income dataset and RandomForest classifier is in tests/test_adult_income.py\n\nMulti-class Classification example using the Cancer risk dataset and RandomForest classifier is in tests/test_cancer_risk.py\n\n### Citing\n\nPlease cite it as follows:\n\nNirmalie Wiratunga and Anjana Wijekoon and Ikechukwu Nkisi-Orji and Kyle Martin and Chamath Palihawadana and David Corsar (2021). DisCERN:Discovering Counterfactual Explanations using Relevance Features from Neighbourhoods. ArXiv,  vol. abs/2109.05800\n\n\nBibtex:\n\n    @misc{wiratunga2021discerndiscovering,\n      title={DisCERN:Discovering Counterfactual Explanations using Relevance Features from Neighbourhoods}, \n      author={Nirmalie Wiratunga and Anjana Wijekoon and Ikechukwu Nkisi-Orji and Kyle Martin and Chamath Palihawadana and David Corsar},\n      year={2021},\n      eprint={2109.05800},\n      archivePrefix={arXiv},\n      primaryClass={cs.LG}\n}\n\n\n<br>\n<br>\n<br>\n<br>\n\n<img align=\"left\" src=\"isee.png\" alt=\"drawing\" height=\"50\"/>\n<img align=\"right\" src=\"chistera.png\" alt=\"drawing\" height=\"50\"/><br><br><br>\n<center>This research is funded by the <a href=\"https://isee4xai.com\">iSee project</a> which received funding from EPSRC under the grant number EP/V061755/1. iSee is part of the <a href=\"https://www.chistera.eu/\">CHIST-ERA pathfinder programme</a> for European coordinated research on future and emerging information and communication technologies.</center>\n\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "DisCERN: Discovering Counterfactual Explanations using Relevance Features from Neighbourhoods",
    "version": "0.0.25",
    "split_keywords": [
        "machine-learning",
        "explanation",
        "interpretability",
        "counterfactual"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "2e318fbeabdb1e87e20a749dba39450d",
                "sha256": "2212ab6ce1ccf2a2ea55771fda29e348807900b6e12ee63289864e32f47feac0"
            },
            "downloads": -1,
            "filename": "discern_xai-0.0.25-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2e318fbeabdb1e87e20a749dba39450d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 7353,
            "upload_time": "2022-12-10T20:45:10",
            "upload_time_iso_8601": "2022-12-10T20:45:10.943064Z",
            "url": "https://files.pythonhosted.org/packages/c5/d7/e39b5fb44677fd1a73a65429967b1d67847cd652d2b2acceb49cbc383d24/discern_xai-0.0.25-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "5a89be13569eab1c61d8870e511803a2",
                "sha256": "72ee189139b67538770e6864064504ec8a7f7d006251fe2a176490d11b176c72"
            },
            "downloads": -1,
            "filename": "discern-xai-0.0.25.tar.gz",
            "has_sig": false,
            "md5_digest": "5a89be13569eab1c61d8870e511803a2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5188,
            "upload_time": "2022-12-10T20:45:12",
            "upload_time_iso_8601": "2022-12-10T20:45:12.812802Z",
            "url": "https://files.pythonhosted.org/packages/16/0c/0bf7bf8d8ab1f442fb93e08052f79859265dff06cb0729b60d80eaab7130/discern-xai-0.0.25.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-10 20:45:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "RGU-Computing",
    "github_project": "discern-xai",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "scikit-learn",
            "specs": []
        },
        {
            "name": "heapq",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        },
        {
            "name": "lime",
            "specs": []
        }
    ],
    "lcname": "discern-xai"
}
        
Elapsed time: 0.01892s