distfit


Namedistfit JSON
Version 1.8.0 PyPI version JSON
download
home_pagehttps://erdogant.github.io/distfit
Summarydistfit is a python library for probability density fitting.
upload_time2024-05-17 11:17:48
maintainerNone
docs_urlNone
authorErdogan Taskesen
requires_python>=3
licenseNone
keywords
VCS
bugtrack_url
requirements matplotlib numpy pandas statsmodels scipy pypickle colourmap packaging joblib
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <a href="https://erdogant.github.io/pca/">
  <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/logo.png" width="600" />
  </a>
</p>

[![Python](https://img.shields.io/pypi/pyversions/distfit)](https://img.shields.io/pypi/pyversions/distfit)
[![Pypi](https://img.shields.io/pypi/v/distfit)](https://pypi.org/project/distfit/)
[![Docs](https://img.shields.io/badge/Sphinx-Docs-Green)](https://erdogant.github.io/distfit/)
[![LOC](https://sloc.xyz/github/erdogant/distfit/?category=code)](https://github.com/erdogant/distfit/)
[![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=month&units=international_system&left_color=grey&right_color=brightgreen&left_text=PyPI%20downloads/month)](https://pepy.tech/project/distfit)
[![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=Downloads)](https://pepy.tech/project/distfit)
[![License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/erdogant/distfit/blob/master/LICENSE)
[![Forks](https://img.shields.io/github/forks/erdogant/distfit.svg)](https://github.com/erdogant/distfit/network)
[![Issues](https://img.shields.io/github/issues/erdogant/distfit.svg)](https://github.com/erdogant/distfit/issues)
[![Project Status](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active)
[![DOI](https://zenodo.org/badge/231843440.svg)](https://zenodo.org/badge/latestdoi/231843440)
[![Medium](https://img.shields.io/badge/Medium-Blog-black)](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog)
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://erdogant.github.io/distfit/pages/html/Documentation.html#colab-notebook)
[![Donate](https://img.shields.io/badge/Support%20this%20project-grey.svg?logo=github%20sponsors)](https://erdogant.github.io/distfit/pages/html/Documentation.html#)
<!---[![BuyMeCoffee](https://img.shields.io/badge/buymea-coffee-yellow.svg)](https://www.buymeacoffee.com/erdogant)-->
<!---[![Coffee](https://img.shields.io/badge/coffee-black-grey.svg)](https://erdogant.github.io/donate/?currency=USD&amount=5)-->

# 
### Blogs
#### [1. How to Find the Best Theoretical Distribution for Your Data](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog)

#### [2. Outlier Detection Using Distribution Fitting in Univariate Datasets](https://towardsdatascience.com/outlier-detection-using-distribution-fitting-in-univariate-data-sets-ac8b7a14d40e)

#### [3. Step-by-Step Guide to Generate Synthetic Data by Sampling From Univariate Distributions](https://towardsdatascience.com/step-by-step-guide-to-generate-synthetic-data-by-sampling-from-univariate-distributions-6b0be4221cb1)



# 

### [Documentation pages](https://erdogant.github.io/distfit/)

# 

``distfit`` is a python package for probability density fitting of univariate distributions for random variables.
With the random variable as an input, distfit can find the best fit for parametric, non-parametric, and discrete distributions.

* For the parametric approach, the distfit library can determine the best fit across 89 theoretical distributions.
  To score the fit, one of the scoring statistics for the good-of-fitness test can be used used, such as RSS/SSE, Wasserstein,
  Kolmogorov-Smirnov (KS), or Energy. After finding the best-fitted theoretical distribution, the loc, scale,
  and arg parameters are returned, such as mean and standard deviation for normal distribution.

* For the non-parametric approach, the distfit library contains two methods, the quantile and percentile method.
  Both methods assume that the data does not follow a specific probability distribution. In the case of the quantile method,
  the quantiles of the data are modeled whereas for the percentile method, the percentiles are modeled.

* In case the dataset contains discrete values, the distift library contains the option for discrete fitting.
  The best fit is then derived using the binomial distribution.

# 
**⭐️ Star this repo if you like it ⭐️**
# 



### Installation

##### Install distfit from PyPI
```bash
pip install distfit
```

##### Install from github source (beta version)
```bash
 install git+https://github.com/erdogant/distfit
```  

##### Check version
```python
import distfit
print(distfit.__version__)
```

##### The following functions are available after installation:

```python
# Import library
from distfit import distfit

dfit = distfit()        # Initialize 
dfit.fit_transform(X)   # Fit distributions on empirical data X
dfit.predict(y)         # Predict the probability of the resonse variables
dfit.plot()             # Plot the best fitted distribution (y is included if prediction is made)
```

<hr>

### Examples

# 

##### [Example: Quick start to find best fit for your input data](https://erdogant.github.io/distfit/pages/html/Examples.html#)

```python

# [distfit] >INFO> fit
# [distfit] >INFO> transform
# [distfit] >INFO> [norm      ] [0.00 sec] [RSS: 0.00108326] [loc=-0.048 scale=1.997]
# [distfit] >INFO> [expon     ] [0.00 sec] [RSS: 0.404237] [loc=-6.897 scale=6.849]
# [distfit] >INFO> [pareto    ] [0.00 sec] [RSS: 0.404237] [loc=-536870918.897 scale=536870912.000]
# [distfit] >INFO> [dweibull  ] [0.06 sec] [RSS: 0.0115552] [loc=-0.031 scale=1.722]
# [distfit] >INFO> [t         ] [0.59 sec] [RSS: 0.00108349] [loc=-0.048 scale=1.997]
# [distfit] >INFO> [genextreme] [0.17 sec] [RSS: 0.00300806] [loc=-0.806 scale=1.979]
# [distfit] >INFO> [gamma     ] [0.05 sec] [RSS: 0.00108459] [loc=-1862.903 scale=0.002]
# [distfit] >INFO> [lognorm   ] [0.32 sec] [RSS: 0.00121597] [loc=-110.597 scale=110.530]
# [distfit] >INFO> [beta      ] [0.10 sec] [RSS: 0.00105629] [loc=-16.364 scale=32.869]
# [distfit] >INFO> [uniform   ] [0.00 sec] [RSS: 0.287339] [loc=-6.897 scale=14.437]
# [distfit] >INFO> [loggamma  ] [0.12 sec] [RSS: 0.00109042] [loc=-370.746 scale=55.722]
# [distfit] >INFO> Compute confidence intervals [parametric]
# [distfit] >INFO> Compute significance for 9 samples.
# [distfit] >INFO> Multiple test correction method applied: [fdr_bh].
# [distfit] >INFO> Create PDF plot for the parametric method.
# [distfit] >INFO> Mark 5 significant regions
# [distfit] >INFO> Estimated distribution: beta [loc:-16.364265, scale:32.868811]
```

<p align="left">
  <a href="https://erdogant.github.io/distfit/pages/html/Examples.html#make-predictions">
  <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/example_figP4c.png" width="450" />
  </a>
</p>


# 

##### [Example: Plot summary of the tested distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#plot-rss)

After we have a fitted model, we can make some predictions using the theoretical distributions. 
After making some predictions, we can plot again but now the predictions are automatically included.

<p align="left">
  <a href="https://erdogant.github.io/distfit/pages/html/Examples.html#plot-rss">
  <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/fig1_summary.png" width="450" />
  </a>
</p>

# 

##### [Example: Make predictions using the fitted distribution](https://erdogant.github.io/distfit/pages/html/Examples.html#make-predictions)


<p align="left">
  <a href="https://erdogant.github.io/distfit/pages/html/Examples.html#make-predictions">
  <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/example_figP1a.png" width="450" />
  </a>
</p>



# 

##### [Example: Test for one specific distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-one-specific-distribution)

The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html

<p align="left">
  <a href="https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-one-specific-distribution">
  <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/example_figP3b.png" width="450" />
  </a>
</p>


# 

##### [Example: Test for multiple distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-multiple-distributions)

The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html

<p align="left">
  <a href="https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-multiple-distributions">
  <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/example_figP2b.png" width="450" />
  </a>
</p>


# 


##### [Example: Fit discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html)


```python
from scipy.stats import binom
# Generate random numbers

# Set parameters for the test-case
n = 8
p = 0.5

# Generate 10000 samples of the distribution of (n, p)
X = binom(n, p).rvs(10000)
print(X)

# [5 1 4 5 5 6 2 4 6 5 4 4 4 7 3 4 4 2 3 3 4 4 5 1 3 2 7 4 5 2 3 4 3 3 2 3 5
#  4 6 7 6 2 4 3 3 5 3 5 3 4 4 4 7 5 4 5 3 4 3 3 4 3 3 6 3 3 5 4 4 2 3 2 5 7
#  5 4 8 3 4 3 5 4 3 5 5 2 5 6 7 4 5 5 5 4 4 3 4 5 6 2...]

# Import distfit
from distfit import distfit

# Initialize for discrete distribution fitting
dfit = distfit(method='discrete')

# Run distfit to and determine whether we can find the parameters from the data.
dfit.fit_transform(X)

# [distfit] >fit..
# [distfit] >transform..
# [distfit] >Fit using binomial distribution..
# [distfit] >[binomial] [SSE: 7.79] [n: 8] [p: 0.499959] [chi^2: 1.11]
# [distfit] >Compute confidence interval [discrete]

```
<p align="left">
  <a href="https://erdogant.github.io/distfit/pages/html/Discrete.html">
  <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/binomial_plot.png" width="450" />
  </a>
</p>

# 

##### [Example: Make predictions on unseen data for discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html#make-predictions)


<p align="left">
  <a href="https://erdogant.github.io/distfit/pages/html/Discrete.html#make-predictions">
  <img src="https://github.com/erdogant/distfit/blob/master/docs/figs/binomial_plot_predict.png" width="450" />
  </a>
</p>


# 


##### [Example: Generate samples based on the fitted distribution](https://erdogant.github.io/distfit/pages/html/Generate.html)

<hr>

### Contributors
Setting up and maintaining distfit has been possible thanks to users and contributors. Thanks:

<p align="left">
  <a href="https://github.com/erdogant/distfit/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=erdogant/distfit" />
  </a>
</p>


### Citation
Please cite ``distfit`` in your publications if this is useful for your research. See column right for citation information.

### Maintainer
* Erdogan Taskesen, github: [erdogant](https://github.com/erdogant)
* Contributions are welcome.
* If you wish to buy me a <a href="https://erdogant.github.io/donate/?currency=USD&amount=5">Coffee</a> for this work, it is very appreciated :)

            

Raw data

            {
    "_id": null,
    "home_page": "https://erdogant.github.io/distfit",
    "name": "distfit",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": null,
    "keywords": null,
    "author": "Erdogan Taskesen",
    "author_email": "erdogant@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f1/3f/2b62715bb544df9a9703c28eb3c1124630b533ccc7684bb0467c03f4fb4f/distfit-1.8.0.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\r\n  <a href=\"https://erdogant.github.io/pca/\">\r\n  <img src=\"https://github.com/erdogant/distfit/blob/master/docs/figs/logo.png\" width=\"600\" />\r\n  </a>\r\n</p>\r\n\r\n[![Python](https://img.shields.io/pypi/pyversions/distfit)](https://img.shields.io/pypi/pyversions/distfit)\r\n[![Pypi](https://img.shields.io/pypi/v/distfit)](https://pypi.org/project/distfit/)\r\n[![Docs](https://img.shields.io/badge/Sphinx-Docs-Green)](https://erdogant.github.io/distfit/)\r\n[![LOC](https://sloc.xyz/github/erdogant/distfit/?category=code)](https://github.com/erdogant/distfit/)\r\n[![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=month&units=international_system&left_color=grey&right_color=brightgreen&left_text=PyPI%20downloads/month)](https://pepy.tech/project/distfit)\r\n[![Downloads](https://static.pepy.tech/personalized-badge/distfit?period=total&units=international_system&left_color=grey&right_color=brightgreen&left_text=Downloads)](https://pepy.tech/project/distfit)\r\n[![License](https://img.shields.io/badge/license-MIT-green.svg)](https://github.com/erdogant/distfit/blob/master/LICENSE)\r\n[![Forks](https://img.shields.io/github/forks/erdogant/distfit.svg)](https://github.com/erdogant/distfit/network)\r\n[![Issues](https://img.shields.io/github/issues/erdogant/distfit.svg)](https://github.com/erdogant/distfit/issues)\r\n[![Project Status](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active)\r\n[![DOI](https://zenodo.org/badge/231843440.svg)](https://zenodo.org/badge/latestdoi/231843440)\r\n[![Medium](https://img.shields.io/badge/Medium-Blog-black)](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog)\r\n[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://erdogant.github.io/distfit/pages/html/Documentation.html#colab-notebook)\r\n[![Donate](https://img.shields.io/badge/Support%20this%20project-grey.svg?logo=github%20sponsors)](https://erdogant.github.io/distfit/pages/html/Documentation.html#)\r\n<!---[![BuyMeCoffee](https://img.shields.io/badge/buymea-coffee-yellow.svg)](https://www.buymeacoffee.com/erdogant)-->\r\n<!---[![Coffee](https://img.shields.io/badge/coffee-black-grey.svg)](https://erdogant.github.io/donate/?currency=USD&amount=5)-->\r\n\r\n# \r\n### Blogs\r\n#### [1. How to Find the Best Theoretical Distribution for Your Data](https://erdogant.github.io/distfit/pages/html/Documentation.html#medium-blog)\r\n\r\n#### [2. Outlier Detection Using Distribution Fitting in Univariate Datasets](https://towardsdatascience.com/outlier-detection-using-distribution-fitting-in-univariate-data-sets-ac8b7a14d40e)\r\n\r\n#### [3. Step-by-Step Guide to Generate Synthetic Data by Sampling From Univariate Distributions](https://towardsdatascience.com/step-by-step-guide-to-generate-synthetic-data-by-sampling-from-univariate-distributions-6b0be4221cb1)\r\n\r\n\r\n\r\n# \r\n\r\n### [Documentation pages](https://erdogant.github.io/distfit/)\r\n\r\n# \r\n\r\n``distfit`` is a python package for probability density fitting of univariate distributions for random variables.\r\nWith the random variable as an input, distfit can find the best fit for parametric, non-parametric, and discrete distributions.\r\n\r\n* For the parametric approach, the distfit library can determine the best fit across 89 theoretical distributions.\r\n  To score the fit, one of the scoring statistics for the good-of-fitness test can be used used, such as RSS/SSE, Wasserstein,\r\n  Kolmogorov-Smirnov (KS), or Energy. After finding the best-fitted theoretical distribution, the loc, scale,\r\n  and arg parameters are returned, such as mean and standard deviation for normal distribution.\r\n\r\n* For the non-parametric approach, the distfit library contains two methods, the quantile and percentile method.\r\n  Both methods assume that the data does not follow a specific probability distribution. In the case of the quantile method,\r\n  the quantiles of the data are modeled whereas for the percentile method, the percentiles are modeled.\r\n\r\n* In case the dataset contains discrete values, the distift library contains the option for discrete fitting.\r\n  The best fit is then derived using the binomial distribution.\r\n\r\n# \r\n**\u2b50\ufe0f Star this repo if you like it \u2b50\ufe0f**\r\n# \r\n\r\n\r\n\r\n### Installation\r\n\r\n##### Install distfit from PyPI\r\n```bash\r\npip install distfit\r\n```\r\n\r\n##### Install from github source (beta version)\r\n```bash\r\n install git+https://github.com/erdogant/distfit\r\n```  \r\n\r\n##### Check version\r\n```python\r\nimport distfit\r\nprint(distfit.__version__)\r\n```\r\n\r\n##### The following functions are available after installation:\r\n\r\n```python\r\n# Import library\r\nfrom distfit import distfit\r\n\r\ndfit = distfit()        # Initialize \r\ndfit.fit_transform(X)   # Fit distributions on empirical data X\r\ndfit.predict(y)         # Predict the probability of the resonse variables\r\ndfit.plot()             # Plot the best fitted distribution (y is included if prediction is made)\r\n```\r\n\r\n<hr>\r\n\r\n### Examples\r\n\r\n# \r\n\r\n##### [Example: Quick start to find best fit for your input data](https://erdogant.github.io/distfit/pages/html/Examples.html#)\r\n\r\n```python\r\n\r\n# [distfit] >INFO> fit\r\n# [distfit] >INFO> transform\r\n# [distfit] >INFO> [norm      ] [0.00 sec] [RSS: 0.00108326] [loc=-0.048 scale=1.997]\r\n# [distfit] >INFO> [expon     ] [0.00 sec] [RSS: 0.404237] [loc=-6.897 scale=6.849]\r\n# [distfit] >INFO> [pareto    ] [0.00 sec] [RSS: 0.404237] [loc=-536870918.897 scale=536870912.000]\r\n# [distfit] >INFO> [dweibull  ] [0.06 sec] [RSS: 0.0115552] [loc=-0.031 scale=1.722]\r\n# [distfit] >INFO> [t         ] [0.59 sec] [RSS: 0.00108349] [loc=-0.048 scale=1.997]\r\n# [distfit] >INFO> [genextreme] [0.17 sec] [RSS: 0.00300806] [loc=-0.806 scale=1.979]\r\n# [distfit] >INFO> [gamma     ] [0.05 sec] [RSS: 0.00108459] [loc=-1862.903 scale=0.002]\r\n# [distfit] >INFO> [lognorm   ] [0.32 sec] [RSS: 0.00121597] [loc=-110.597 scale=110.530]\r\n# [distfit] >INFO> [beta      ] [0.10 sec] [RSS: 0.00105629] [loc=-16.364 scale=32.869]\r\n# [distfit] >INFO> [uniform   ] [0.00 sec] [RSS: 0.287339] [loc=-6.897 scale=14.437]\r\n# [distfit] >INFO> [loggamma  ] [0.12 sec] [RSS: 0.00109042] [loc=-370.746 scale=55.722]\r\n# [distfit] >INFO> Compute confidence intervals [parametric]\r\n# [distfit] >INFO> Compute significance for 9 samples.\r\n# [distfit] >INFO> Multiple test correction method applied: [fdr_bh].\r\n# [distfit] >INFO> Create PDF plot for the parametric method.\r\n# [distfit] >INFO> Mark 5 significant regions\r\n# [distfit] >INFO> Estimated distribution: beta [loc:-16.364265, scale:32.868811]\r\n```\r\n\r\n<p align=\"left\">\r\n  <a href=\"https://erdogant.github.io/distfit/pages/html/Examples.html#make-predictions\">\r\n  <img src=\"https://github.com/erdogant/distfit/blob/master/docs/figs/example_figP4c.png\" width=\"450\" />\r\n  </a>\r\n</p>\r\n\r\n\r\n# \r\n\r\n##### [Example: Plot summary of the tested distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#plot-rss)\r\n\r\nAfter we have a fitted model, we can make some predictions using the theoretical distributions. \r\nAfter making some predictions, we can plot again but now the predictions are automatically included.\r\n\r\n<p align=\"left\">\r\n  <a href=\"https://erdogant.github.io/distfit/pages/html/Examples.html#plot-rss\">\r\n  <img src=\"https://github.com/erdogant/distfit/blob/master/docs/figs/fig1_summary.png\" width=\"450\" />\r\n  </a>\r\n</p>\r\n\r\n# \r\n\r\n##### [Example: Make predictions using the fitted distribution](https://erdogant.github.io/distfit/pages/html/Examples.html#make-predictions)\r\n\r\n\r\n<p align=\"left\">\r\n  <a href=\"https://erdogant.github.io/distfit/pages/html/Examples.html#make-predictions\">\r\n  <img src=\"https://github.com/erdogant/distfit/blob/master/docs/figs/example_figP1a.png\" width=\"450\" />\r\n  </a>\r\n</p>\r\n\r\n\r\n\r\n# \r\n\r\n##### [Example: Test for one specific distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-one-specific-distribution)\r\n\r\nThe full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html\r\n\r\n<p align=\"left\">\r\n  <a href=\"https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-one-specific-distribution\">\r\n  <img src=\"https://github.com/erdogant/distfit/blob/master/docs/figs/example_figP3b.png\" width=\"450\" />\r\n  </a>\r\n</p>\r\n\r\n\r\n# \r\n\r\n##### [Example: Test for multiple distributions](https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-multiple-distributions)\r\n\r\nThe full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html\r\n\r\n<p align=\"left\">\r\n  <a href=\"https://erdogant.github.io/distfit/pages/html/Examples.html#fit-for-multiple-distributions\">\r\n  <img src=\"https://github.com/erdogant/distfit/blob/master/docs/figs/example_figP2b.png\" width=\"450\" />\r\n  </a>\r\n</p>\r\n\r\n\r\n# \r\n\r\n\r\n##### [Example: Fit discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html)\r\n\r\n\r\n```python\r\nfrom scipy.stats import binom\r\n# Generate random numbers\r\n\r\n# Set parameters for the test-case\r\nn = 8\r\np = 0.5\r\n\r\n# Generate 10000 samples of the distribution of (n, p)\r\nX = binom(n, p).rvs(10000)\r\nprint(X)\r\n\r\n# [5 1 4 5 5 6 2 4 6 5 4 4 4 7 3 4 4 2 3 3 4 4 5 1 3 2 7 4 5 2 3 4 3 3 2 3 5\r\n#  4 6 7 6 2 4 3 3 5 3 5 3 4 4 4 7 5 4 5 3 4 3 3 4 3 3 6 3 3 5 4 4 2 3 2 5 7\r\n#  5 4 8 3 4 3 5 4 3 5 5 2 5 6 7 4 5 5 5 4 4 3 4 5 6 2...]\r\n\r\n# Import distfit\r\nfrom distfit import distfit\r\n\r\n# Initialize for discrete distribution fitting\r\ndfit = distfit(method='discrete')\r\n\r\n# Run distfit to and determine whether we can find the parameters from the data.\r\ndfit.fit_transform(X)\r\n\r\n# [distfit] >fit..\r\n# [distfit] >transform..\r\n# [distfit] >Fit using binomial distribution..\r\n# [distfit] >[binomial] [SSE: 7.79] [n: 8] [p: 0.499959] [chi^2: 1.11]\r\n# [distfit] >Compute confidence interval [discrete]\r\n\r\n```\r\n<p align=\"left\">\r\n  <a href=\"https://erdogant.github.io/distfit/pages/html/Discrete.html\">\r\n  <img src=\"https://github.com/erdogant/distfit/blob/master/docs/figs/binomial_plot.png\" width=\"450\" />\r\n  </a>\r\n</p>\r\n\r\n# \r\n\r\n##### [Example: Make predictions on unseen data for discrete distribution](https://erdogant.github.io/distfit/pages/html/Discrete.html#make-predictions)\r\n\r\n\r\n<p align=\"left\">\r\n  <a href=\"https://erdogant.github.io/distfit/pages/html/Discrete.html#make-predictions\">\r\n  <img src=\"https://github.com/erdogant/distfit/blob/master/docs/figs/binomial_plot_predict.png\" width=\"450\" />\r\n  </a>\r\n</p>\r\n\r\n\r\n# \r\n\r\n\r\n##### [Example: Generate samples based on the fitted distribution](https://erdogant.github.io/distfit/pages/html/Generate.html)\r\n\r\n<hr>\r\n\r\n### Contributors\r\nSetting up and maintaining distfit has been possible thanks to users and contributors. Thanks:\r\n\r\n<p align=\"left\">\r\n  <a href=\"https://github.com/erdogant/distfit/graphs/contributors\">\r\n  <img src=\"https://contrib.rocks/image?repo=erdogant/distfit\" />\r\n  </a>\r\n</p>\r\n\r\n\r\n### Citation\r\nPlease cite ``distfit`` in your publications if this is useful for your research. See column right for citation information.\r\n\r\n### Maintainer\r\n* Erdogan Taskesen, github: [erdogant](https://github.com/erdogant)\r\n* Contributions are welcome.\r\n* If you wish to buy me a <a href=\"https://erdogant.github.io/donate/?currency=USD&amount=5\">Coffee</a> for this work, it is very appreciated :)\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "distfit is a python library for probability density fitting.",
    "version": "1.8.0",
    "project_urls": {
        "Download": "https://github.com/erdogant/distfit/archive/1.8.0.tar.gz",
        "Homepage": "https://erdogant.github.io/distfit"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6323a52fdb052c86da7a8fa9d5b233529958ec61a945a666f3f9ba66d29eaadb",
                "md5": "94b41d5fc88c39e93eff52091ee85062",
                "sha256": "8d84b726b328416d2c4594c956856698c98a1354a883a075837ba9786558045b"
            },
            "downloads": -1,
            "filename": "distfit-1.8.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "94b41d5fc88c39e93eff52091ee85062",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 42866,
            "upload_time": "2024-05-17T11:17:46",
            "upload_time_iso_8601": "2024-05-17T11:17:46.129567Z",
            "url": "https://files.pythonhosted.org/packages/63/23/a52fdb052c86da7a8fa9d5b233529958ec61a945a666f3f9ba66d29eaadb/distfit-1.8.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f13f2b62715bb544df9a9703c28eb3c1124630b533ccc7684bb0467c03f4fb4f",
                "md5": "5faaa355fb41130ad05724d546be7e94",
                "sha256": "ed6a4637c826f40f57e90229d1e63d8c22e00b8d715bd2d3c39082d013f10d6c"
            },
            "downloads": -1,
            "filename": "distfit-1.8.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5faaa355fb41130ad05724d546be7e94",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3",
            "size": 43670,
            "upload_time": "2024-05-17T11:17:48",
            "upload_time_iso_8601": "2024-05-17T11:17:48.370708Z",
            "url": "https://files.pythonhosted.org/packages/f1/3f/2b62715bb544df9a9703c28eb3c1124630b533ccc7684bb0467c03f4fb4f/distfit-1.8.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-17 11:17:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "erdogant",
    "github_project": "distfit",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "\"3.5.2\""
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "statsmodels",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "pypickle",
            "specs": []
        },
        {
            "name": "colourmap",
            "specs": [
                [
                    ">=",
                    "\"1.1.10\""
                ]
            ]
        },
        {
            "name": "packaging",
            "specs": []
        },
        {
            "name": "joblib",
            "specs": []
        }
    ],
    "lcname": "distfit"
}
        
Elapsed time: 0.23608s