docling-mcp


Namedocling-mcp JSON
Version 1.0.1 PyPI version JSON
download
home_pageNone
SummaryRunning Docling as an agent using tools
upload_time2025-07-30 13:46:39
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords ai docling rag agentic agents artificial intelligence document understanding mcp message control protocol
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <a href="https://github.com/docling-project/docling-mcp">
    <img loading="lazy" alt="Docling" src="https://github.com/docling-project/docling-mcp/raw/main/docs/assets/docling_mcp.png" width="40%"/>
  </a>
</p>

# Docling MCP: making docling agentic 

[![PyPI version](https://img.shields.io/pypi/v/docling-mcp)](https://pypi.org/project/docling-mcp/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/docling-mcp)](https://pypi.org/project/docling-mcp/)
[![uv](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/uv/main/assets/badge/v0.json)](https://github.com/astral-sh/uv)
[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
[![Pydantic v2](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/pydantic/pydantic/main/docs/badge/v2.json)](https://pydantic.dev)
[![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit)
[![License MIT](https://img.shields.io/github/license/docling-project/docling-mcp)](https://opensource.org/licenses/MIT)
[![PyPI Downloads](https://static.pepy.tech/badge/docling-mcp/month)](https://pepy.tech/projects/docling-mcp)
[![LF AI & Data](https://img.shields.io/badge/LF%20AI%20%26%20Data-003778?logo=linuxfoundation&logoColor=fff&color=0094ff&labelColor=003778)](https://lfaidata.foundation/projects/)

A document processing service using the Docling-MCP library and MCP (Message Control Protocol) for tool integration.


## Overview

Docling MCP is a service that provides tools for document conversion, processing and generation. It uses the Docling library to convert PDF documents into structured formats and provides a caching mechanism to improve performance. The service exposes functionality through a set of tools that can be called by client applications.

## Features

- Conversion tools:
    - PDF document conversion to structured JSON format (DoclingDocument)
- Generation tools:
    - Document generation in DoclingDocument, which can be exported to multiple formats
- Local document caching for improved performance
- Support for local files and URLs as document sources
- Memory management for handling large documents
- Logging system for debugging and monitoring
- RAG applications with Milvus upload and retrieval

## Getting started

The easiest way to install Docling MCP is connect it to your client is launching it via [uvx](https://docs.astral.sh/uv/).

Depending on the transfer protocol required, specify the argument `--transport`, for example

- **`stdio`** used e.g. in Claude for Desktop and LM Studio 

    ```sh
    uvx --from docling-mcp docling-mcp-server --transport stdio
    ```

- **`sse`** used e.g. in Llama Stack

    ```sh
    uvx --from docling-mcp docling-mcp-server --transport sse
    ```


- **`streamable-http`** used e.g. in containers setup

    ```sh
    uvx --from docling-mcp docling-mcp-server --transport streamable-http
    ```

More options are available, e.g. the selection of which toolgroup to launch. Use the `--help` argument to inspect all the CLI options.

For developing the MCP tools further, please refer to the [docs/development.md](docs/development.md) page for instructions.

## Integration with MCP clients

One of the easiest ways to experiment with the tools provided by Docling MCP is to leverage an AI desktop client with MCP support.
Most of these clients use a common config interface. Adding Docling MCP in your favorite client is usually as simple as adding the following entry in the configuration file.

```json
{
  "mcpServers": {
    "docling": {
      "command": "uvx",
      "args": [
        "--from=docling-mcp",
        "docling-mcp-server"
      ]
    }
  }
} 
```

When using **[Claude for Desktop](https://claude.ai/download)**, simply edit the config file `claude_desktop_config.json` with the snippet above or the example provided [here](docs/integrations/claude_desktop_config.json).

In **[LM Studio](https://lmstudio.ai/)**, edit the `mcp.json` file with the appropriate section or simply clik on the button below for a direct install.

[![Add MCP Server docling to LM Studio](https://files.lmstudio.ai/deeplink/mcp-install-light.svg)](https://lmstudio.ai/install-mcp?name=docling&config=eyJjb21tYW5kIjoidXZ4IiwiYXJncyI6WyItLWZyb209ZG9jbGluZy1tY3AiLCJkb2NsaW5nLW1jcC1zZXJ2ZXIiXX0%3D)

Other integrations are described in [./docs/integrations/](./docs/integrations/).

## Examples

### Converting documents

Example of prompt for converting PDF documents:

```prompt
Convert the PDF document at <provide file-path> into DoclingDocument and return its document-key.
```

### Generating documents

Example of prompt for generating new documents:

```prompt
I want you to write a Docling document. To do this, you will create a document first by invoking `create_new_docling_document`. Next you can add a title (by invoking `add_title_to_docling_document`) and then iteratively add new section-headings and paragraphs. If you want to insert lists (or nested lists), you will first open a list (by invoking `open_list_in_docling_document`), next add the list_items (by invoking `add_listitem_to_list_in_docling_document`). After adding list-items, you must close the list (by invoking `close_list_in_docling_document`). Nested lists can be created in the same way, by opening and closing additional lists.

During the writing process, you can check what has been written already by calling the `export_docling_document_to_markdown` tool, which will return the currently written document. At the end of the writing, you must save the document and return me the filepath of the saved document.

The document should investigate the impact of tokenizers on the quality of LLMs.
```

## License

The Docling MCP codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.

## LF AI & Data

Docling and Docling MCP is hosted as a project in the [LF AI & Data Foundation](https://lfaidata.foundation/projects/).

**IBM ❤️ Open Source AI**: The project was started by the AI for knowledge team at IBM Research Zurich.

[docling_document]: https://docling-project.github.io/docling/concepts/docling_document/
[integrations]: https://docling-project.github.io/docling-mcp/integrations/
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "docling-mcp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "Peter Staar <taa@zurich.ibm.com>, Adel Zaalouk <azaalouk@redhat.com>, Michele Dolfi <dol@zurich.ibm.com>, Panos Vagenas <pva@zurich.ibm.com>, Christoph Auer <cau@zurich.ibm.com>, Cesar Berrospi Ramis <ceb@zurich.ibm.com>",
    "keywords": "AI, Docling, RAG, agentic, agents, artificial intelligence, document understanding, mcp, message control protocol",
    "author": null,
    "author_email": "Peter Staar <taa@zurich.ibm.com>, Adel Zaalouk <azaalouk@redhat.com>, Michele Dolfi <dol@zurich.ibm.com>, Panos Vagenas <pva@zurich.ibm.com>, Christoph Auer <cau@zurich.ibm.com>, Cesar Berrospi Ramis <ceb@zurich.ibm.com>",
    "download_url": "https://files.pythonhosted.org/packages/30/b0/720a520369aab9bf58a58dcaaa252c06091836c8eda26c4e3b835d154c87/docling_mcp-1.0.1.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n  <a href=\"https://github.com/docling-project/docling-mcp\">\n    <img loading=\"lazy\" alt=\"Docling\" src=\"https://github.com/docling-project/docling-mcp/raw/main/docs/assets/docling_mcp.png\" width=\"40%\"/>\n  </a>\n</p>\n\n# Docling MCP: making docling agentic \n\n[![PyPI version](https://img.shields.io/pypi/v/docling-mcp)](https://pypi.org/project/docling-mcp/)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/docling-mcp)](https://pypi.org/project/docling-mcp/)\n[![uv](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/uv/main/assets/badge/v0.json)](https://github.com/astral-sh/uv)\n[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)\n[![Pydantic v2](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/pydantic/pydantic/main/docs/badge/v2.json)](https://pydantic.dev)\n[![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit)\n[![License MIT](https://img.shields.io/github/license/docling-project/docling-mcp)](https://opensource.org/licenses/MIT)\n[![PyPI Downloads](https://static.pepy.tech/badge/docling-mcp/month)](https://pepy.tech/projects/docling-mcp)\n[![LF AI & Data](https://img.shields.io/badge/LF%20AI%20%26%20Data-003778?logo=linuxfoundation&logoColor=fff&color=0094ff&labelColor=003778)](https://lfaidata.foundation/projects/)\n\nA document processing service using the Docling-MCP library and MCP (Message Control Protocol) for tool integration.\n\n\n## Overview\n\nDocling MCP is a service that provides tools for document conversion, processing and generation. It uses the Docling library to convert PDF documents into structured formats and provides a caching mechanism to improve performance. The service exposes functionality through a set of tools that can be called by client applications.\n\n## Features\n\n- Conversion tools:\n    - PDF document conversion to structured JSON format (DoclingDocument)\n- Generation tools:\n    - Document generation in DoclingDocument, which can be exported to multiple formats\n- Local document caching for improved performance\n- Support for local files and URLs as document sources\n- Memory management for handling large documents\n- Logging system for debugging and monitoring\n- RAG applications with Milvus upload and retrieval\n\n## Getting started\n\nThe easiest way to install Docling MCP is connect it to your client is launching it via [uvx](https://docs.astral.sh/uv/).\n\nDepending on the transfer protocol required, specify the argument `--transport`, for example\n\n- **`stdio`** used e.g. in Claude for Desktop and LM Studio \n\n    ```sh\n    uvx --from docling-mcp docling-mcp-server --transport stdio\n    ```\n\n- **`sse`** used e.g. in Llama Stack\n\n    ```sh\n    uvx --from docling-mcp docling-mcp-server --transport sse\n    ```\n\n\n- **`streamable-http`** used e.g. in containers setup\n\n    ```sh\n    uvx --from docling-mcp docling-mcp-server --transport streamable-http\n    ```\n\nMore options are available, e.g. the selection of which toolgroup to launch. Use the `--help` argument to inspect all the CLI options.\n\nFor developing the MCP tools further, please refer to the [docs/development.md](docs/development.md) page for instructions.\n\n## Integration with MCP clients\n\nOne of the easiest ways to experiment with the tools provided by Docling MCP is to leverage an AI desktop client with MCP support.\nMost of these clients use a common config interface. Adding Docling MCP in your favorite client is usually as simple as adding the following entry in the configuration file.\n\n```json\n{\n  \"mcpServers\": {\n    \"docling\": {\n      \"command\": \"uvx\",\n      \"args\": [\n        \"--from=docling-mcp\",\n        \"docling-mcp-server\"\n      ]\n    }\n  }\n} \n```\n\nWhen using **[Claude for Desktop](https://claude.ai/download)**, simply edit the config file `claude_desktop_config.json` with the snippet above or the example provided [here](docs/integrations/claude_desktop_config.json).\n\nIn **[LM Studio](https://lmstudio.ai/)**, edit the `mcp.json` file with the appropriate section or simply clik on the button below for a direct install.\n\n[![Add MCP Server docling to LM Studio](https://files.lmstudio.ai/deeplink/mcp-install-light.svg)](https://lmstudio.ai/install-mcp?name=docling&config=eyJjb21tYW5kIjoidXZ4IiwiYXJncyI6WyItLWZyb209ZG9jbGluZy1tY3AiLCJkb2NsaW5nLW1jcC1zZXJ2ZXIiXX0%3D)\n\nOther integrations are described in [./docs/integrations/](./docs/integrations/).\n\n## Examples\n\n### Converting documents\n\nExample of prompt for converting PDF documents:\n\n```prompt\nConvert the PDF document at <provide file-path> into DoclingDocument and return its document-key.\n```\n\n### Generating documents\n\nExample of prompt for generating new documents:\n\n```prompt\nI want you to write a Docling document. To do this, you will create a document first by invoking `create_new_docling_document`. Next you can add a title (by invoking `add_title_to_docling_document`) and then iteratively add new section-headings and paragraphs. If you want to insert lists (or nested lists), you will first open a list (by invoking `open_list_in_docling_document`), next add the list_items (by invoking `add_listitem_to_list_in_docling_document`). After adding list-items, you must close the list (by invoking `close_list_in_docling_document`). Nested lists can be created in the same way, by opening and closing additional lists.\n\nDuring the writing process, you can check what has been written already by calling the `export_docling_document_to_markdown` tool, which will return the currently written document. At the end of the writing, you must save the document and return me the filepath of the saved document.\n\nThe document should investigate the impact of tokenizers on the quality of LLMs.\n```\n\n## License\n\nThe Docling MCP codebase is under MIT license. For individual model usage, please refer to the model licenses found in the original packages.\n\n## LF AI & Data\n\nDocling and Docling MCP is hosted as a project in the [LF AI & Data Foundation](https://lfaidata.foundation/projects/).\n\n**IBM \u2764\ufe0f Open Source AI**: The project was started by the AI for knowledge team at IBM Research Zurich.\n\n[docling_document]: https://docling-project.github.io/docling/concepts/docling_document/\n[integrations]: https://docling-project.github.io/docling-mcp/integrations/",
    "bugtrack_url": null,
    "license": null,
    "summary": "Running Docling as an agent using tools",
    "version": "1.0.1",
    "project_urls": {
        "Changelog": "https://github.com/docling-project/docling-mcp/blob/main/CHANGELOG.md",
        "Homepage": "https://github.com/docling-project/docling-mcp",
        "Issues": "https://github.com/docling-project/docling-mcp/issues",
        "Repository": "https://github.com/docling-project/docling-mcp"
    },
    "split_keywords": [
        "ai",
        " docling",
        " rag",
        " agentic",
        " agents",
        " artificial intelligence",
        " document understanding",
        " mcp",
        " message control protocol"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ae020072c4a6e94d3b4f8d947b51c5066e894e234f135fca3d35a45835047327",
                "md5": "3c09951d4d53eb6b69fc1dcdd8058d77",
                "sha256": "5ec0c331cb4f3b3bfefe78bc0781ac85a28a7a9a8edb32d36c48d643ed37340d"
            },
            "downloads": -1,
            "filename": "docling_mcp-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3c09951d4d53eb6b69fc1dcdd8058d77",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 19253,
            "upload_time": "2025-07-30T13:46:37",
            "upload_time_iso_8601": "2025-07-30T13:46:37.951951Z",
            "url": "https://files.pythonhosted.org/packages/ae/02/0072c4a6e94d3b4f8d947b51c5066e894e234f135fca3d35a45835047327/docling_mcp-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "30b0720a520369aab9bf58a58dcaaa252c06091836c8eda26c4e3b835d154c87",
                "md5": "dbe5276e36c25c38b8fd7e29123a5e67",
                "sha256": "698071d79279b15afd1bf2c5ba4e35dd0f266428620bf60d9f80c72096a84a48"
            },
            "downloads": -1,
            "filename": "docling_mcp-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "dbe5276e36c25c38b8fd7e29123a5e67",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 17640,
            "upload_time": "2025-07-30T13:46:39",
            "upload_time_iso_8601": "2025-07-30T13:46:39.046681Z",
            "url": "https://files.pythonhosted.org/packages/30/b0/720a520369aab9bf58a58dcaaa252c06091836c8eda26c4e3b835d154c87/docling_mcp-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-30 13:46:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "docling-project",
    "github_project": "docling-mcp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "docling-mcp"
}
        
Elapsed time: 2.22882s