# dstr
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
## Developer Guide
### Setup
``` sh
# create conda environment
$ mamba env create -f env.yml
# update conda environment
$ mamba env update -n dstr --file env.yml
```
### Install
``` sh
pip install -e .
# install from pypi
pip install dstr
```
### nbdev
``` sh
# activate conda environment
$ conda activate dstr
# make sure the dstr package is installed in development mode
$ pip install -e .
# make changes under nbs/ directory
# ...
# compile to have changes apply to the dstr package
$ nbdev_prepare
```
### Publishing
``` sh
# publish to pypi
$ nbdev_pypi
# publish to conda
$ nbdev_conda --build_args '-c conda-forge'
$ nbdev_conda --mambabuild --build_args '-c conda-forge -c dsm-72'
```
# Usage
## Installation
Install latest from the GitHub
[repository](https://github.com/dsm-72/dstr):
``` sh
$ pip install git+https://github.com/dsm-72/dstr.git
```
or from [conda](https://anaconda.org/dsm-72/dstr)
``` sh
$ conda install -c dsm-72 dstr
```
or from [pypi](https://pypi.org/project/dstr/)
``` sh
$ pip install dstr
```
## Documentation
Documentation can be found hosted on GitHub
[repository](https://github.com/dsm-72/dstr)
[pages](https://dsm-72.github.io/dstr/). Additionally you can find
package manager specific guidelines on
[conda](https://anaconda.org/dsm-72/dstr) and
[pypi](https://pypi.org/project/dstr/) respectively.
## PyTorch Documentation:
- [`TorchData`](https://pytorch.org/data/beta/index.html)
- [How to Package PyTorch
Models](https://pytorch.org/docs/stable/package.html)
- [`torch.monitor.Event`](https://pytorch.org/docs/stable/monitor.html#torch.monitor.Event)
- [`torchvision`](https://pytorch.org/vision/stable/index.html)
- [`torchvision.Datasets.VisionDataset`](https://pytorch.org/vision/stable/generated/torchvision.datasets.VisionDataset.html#torchvision.datasets.VisionDataset)
- [`torchvision.utils.flow_to_image`](https://pytorch.org/vision/stable/generated/torchvision.utils.flow_to_image.html)
## PyTorch Models to Consider:
- [Diffusion Video
AutoEncoders](https://github.com/man805/Diffusion-Video-Autoencoders)
- [ConvLSTM
AutoEncoder](https://holmdk.github.io/2020/04/02/video_prediction.html)
- [Recurrent All Pairs Field Transforms for Optical
Flow](https://github.com/princeton-vl/RAFT/blob/master/core/raft.py)
- [Optical Flow Toolbox
(`mmflow`)](https://github.com/open-mmlab/mmflow/blob/master/docs/en/intro.md)
- [`torchvision.models.optical_flow.raft`](https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py)
Raw data
{
"_id": null,
"home_page": "https://github.com/dsm-72/dstr",
"name": "dstr",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": "",
"keywords": "dim dims ndim dstr str dimmed numpy array python py torch pytorch lightning pl trc enum",
"author": "dsm-72",
"author_email": "sumner.magruder@yale.edu",
"download_url": "https://files.pythonhosted.org/packages/14/68/bb6375f505d0eb1159b0153c40c60b58421fb00c828a851ff97f6bb5b3a0/dstr-0.0.1.tar.gz",
"platform": null,
"description": "# dstr\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n## Developer Guide\n\n### Setup\n\n``` sh\n# create conda environment\n$ mamba env create -f env.yml\n\n# update conda environment\n$ mamba env update -n dstr --file env.yml\n```\n\n### Install\n\n``` sh\npip install -e .\n\n# install from pypi\npip install dstr\n```\n\n### nbdev\n\n``` sh\n# activate conda environment\n$ conda activate dstr\n\n# make sure the dstr package is installed in development mode\n$ pip install -e .\n\n# make changes under nbs/ directory\n# ...\n\n# compile to have changes apply to the dstr package\n$ nbdev_prepare\n```\n\n### Publishing\n\n``` sh\n# publish to pypi\n$ nbdev_pypi\n\n# publish to conda\n$ nbdev_conda --build_args '-c conda-forge'\n$ nbdev_conda --mambabuild --build_args '-c conda-forge -c dsm-72'\n```\n\n# Usage\n\n## Installation\n\nInstall latest from the GitHub\n[repository](https://github.com/dsm-72/dstr):\n\n``` sh\n$ pip install git+https://github.com/dsm-72/dstr.git\n```\n\nor from [conda](https://anaconda.org/dsm-72/dstr)\n\n``` sh\n$ conda install -c dsm-72 dstr\n```\n\nor from [pypi](https://pypi.org/project/dstr/)\n\n``` sh\n$ pip install dstr\n```\n\n## Documentation\n\nDocumentation can be found hosted on GitHub\n[repository](https://github.com/dsm-72/dstr)\n[pages](https://dsm-72.github.io/dstr/). Additionally you can find\npackage manager specific guidelines on\n[conda](https://anaconda.org/dsm-72/dstr) and\n[pypi](https://pypi.org/project/dstr/) respectively.\n\n## PyTorch Documentation:\n\n- [`TorchData`](https://pytorch.org/data/beta/index.html)\n- [How to Package PyTorch\n Models](https://pytorch.org/docs/stable/package.html)\n- [`torch.monitor.Event`](https://pytorch.org/docs/stable/monitor.html#torch.monitor.Event)\n- [`torchvision`](https://pytorch.org/vision/stable/index.html)\n- [`torchvision.Datasets.VisionDataset`](https://pytorch.org/vision/stable/generated/torchvision.datasets.VisionDataset.html#torchvision.datasets.VisionDataset)\n- [`torchvision.utils.flow_to_image`](https://pytorch.org/vision/stable/generated/torchvision.utils.flow_to_image.html)\n\n## PyTorch Models to Consider:\n\n- [Diffusion Video\n AutoEncoders](https://github.com/man805/Diffusion-Video-Autoencoders)\n- [ConvLSTM\n AutoEncoder](https://holmdk.github.io/2020/04/02/video_prediction.html)\n- [Recurrent All Pairs Field Transforms for Optical\n Flow](https://github.com/princeton-vl/RAFT/blob/master/core/raft.py)\n- [Optical Flow Toolbox\n (`mmflow`)](https://github.com/open-mmlab/mmflow/blob/master/docs/en/intro.md)\n- [`torchvision.models.optical_flow.raft`](https://github.com/pytorch/vision/blob/main/torchvision/models/optical_flow/raft.py)\n",
"bugtrack_url": null,
"license": "Apache Software License 2.0",
"summary": "dim string",
"version": "0.0.1",
"project_urls": {
"Homepage": "https://github.com/dsm-72/dstr"
},
"split_keywords": [
"dim",
"dims",
"ndim",
"dstr",
"str",
"dimmed",
"numpy",
"array",
"python",
"py",
"torch",
"pytorch",
"lightning",
"pl",
"trc",
"enum"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0ac80b4dd572c1a3a63207996de040c258927e453b2318a15aad712585975044",
"md5": "9102e387a1ff4450316110cdaa9fb900",
"sha256": "4a4bc0fc27318262f7b705e38cbb3734e088bcc6411d708a48bd42e6c90cb510"
},
"downloads": -1,
"filename": "dstr-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9102e387a1ff4450316110cdaa9fb900",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 22753,
"upload_time": "2024-02-25T15:34:19",
"upload_time_iso_8601": "2024-02-25T15:34:19.115516Z",
"url": "https://files.pythonhosted.org/packages/0a/c8/0b4dd572c1a3a63207996de040c258927e453b2318a15aad712585975044/dstr-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1468bb6375f505d0eb1159b0153c40c60b58421fb00c828a851ff97f6bb5b3a0",
"md5": "ff28390cd5ac4c4e0de65f92741013b5",
"sha256": "906d54c6ce3384da8e8900cbbc2544a627934587db2e5cd3febabe762bb3e3c6"
},
"downloads": -1,
"filename": "dstr-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "ff28390cd5ac4c4e0de65f92741013b5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 16527,
"upload_time": "2024-02-25T15:34:20",
"upload_time_iso_8601": "2024-02-25T15:34:20.860276Z",
"url": "https://files.pythonhosted.org/packages/14/68/bb6375f505d0eb1159b0153c40c60b58421fb00c828a851ff97f6bb5b3a0/dstr-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-25 15:34:20",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "dsm-72",
"github_project": "dstr",
"github_not_found": true,
"lcname": "dstr"
}