dynesty


Namedynesty JSON
Version 2.1.5 PyPI version JSON
download
home_pagehttps://github.com/joshspeagle/dynesty
SummaryA dynamic nested sampling package for computing Bayesian posteriors and evidences.
upload_time2024-12-17 20:07:48
maintainerNone
docs_urlNone
authorJoshua S Speagle, Sergey E Koposov
requires_pythonNone
licenseMIT
keywords nested sampling dynamic monte carlo bayesian inference modeling
VCS
bugtrack_url
requirements numpy scipy matplotlib
Travis-CI No Travis.
coveralls test coverage
            [![Build Status](https://github.com/joshspeagle/dynesty/actions/workflows/test.yml/badge.svg)](https://github.com/joshspeagle/dynesty/actions/)
[![Documentation Status](https://readthedocs.org/projects/dynesty/badge/?version=latest)](https://dynesty.readthedocs.io/en/latest/?badge=latest)
[![Coverage Status](https://coveralls.io/repos/github/joshspeagle/dynesty/badge.svg?branch=master)](https://coveralls.io/github/joshspeagle/dynesty?branch=master)[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.6609296.svg)](https://doi.org/10.5281/zenodo.3348367)


dynesty
=======

![dynesty in action](https://github.com/joshspeagle/dynesty/blob/master/docs/images/title.gif)

A Dynamic Nested Sampling package for computing Bayesian posteriors and
evidences. Pure Python. MIT license.

### Documentation
Documentation can be found [here](https://dynesty.readthedocs.io).

### Installation
The most stable release of `dynesty` can be installed
through [pip](https://pip.pypa.io/en/stable) via
```
pip install dynesty
```
The current (less stable) development version can be installed by running
```
python setup.py install
```
from inside the repository.

### Demos
Several Jupyter notebooks that demonstrate most of the available features
of the code can be found 
[here](https://github.com/joshspeagle/dynesty/tree/master/demos).

### Attribution

If you find the package useful in your research, please cite at least *both* of these references:
* The original paper [Speagle (2020)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.3132S/abstract)
* The python implementation [Koposov et al. (2023)](https://doi.org/10.5281/zenodo.3348367) (the citation info is at the bottom of the page on the right)


and ideally also papers describing the underlying methods (see the [documentation](https://dynesty.readthedocs.io/en/latest/references.html) for more details)

### Reporting issues

If you want to report issues, or have questions, please do that on [github](https://github.com/joshspeagle/dynesty/issues).

### Contributing

Patches and contributions are very welcome! Please see [CONTRIBUTING.md](https://github.com/joshspeagle/dynesty/blob/master/CONTRIBUTING.md) for more details.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/joshspeagle/dynesty",
    "name": "dynesty",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "nested sampling, dynamic, monte carlo, bayesian, inference, modeling",
    "author": "Joshua S Speagle, Sergey E Koposov",
    "author_email": "j.speagle@utoronto.ca",
    "download_url": "https://files.pythonhosted.org/packages/d0/20/6a8a27d803900ad8fdfe7d730a66d2304f3fda17616eb8debe10085fa81a/dynesty-2.1.5.tar.gz",
    "platform": null,
    "description": "[![Build Status](https://github.com/joshspeagle/dynesty/actions/workflows/test.yml/badge.svg)](https://github.com/joshspeagle/dynesty/actions/)\n[![Documentation Status](https://readthedocs.org/projects/dynesty/badge/?version=latest)](https://dynesty.readthedocs.io/en/latest/?badge=latest)\n[![Coverage Status](https://coveralls.io/repos/github/joshspeagle/dynesty/badge.svg?branch=master)](https://coveralls.io/github/joshspeagle/dynesty?branch=master)[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.6609296.svg)](https://doi.org/10.5281/zenodo.3348367)\n\n\ndynesty\n=======\n\n![dynesty in action](https://github.com/joshspeagle/dynesty/blob/master/docs/images/title.gif)\n\nA Dynamic Nested Sampling package for computing Bayesian posteriors and\nevidences. Pure Python. MIT license.\n\n### Documentation\nDocumentation can be found [here](https://dynesty.readthedocs.io).\n\n### Installation\nThe most stable release of `dynesty` can be installed\nthrough [pip](https://pip.pypa.io/en/stable) via\n```\npip install dynesty\n```\nThe current (less stable) development version can be installed by running\n```\npython setup.py install\n```\nfrom inside the repository.\n\n### Demos\nSeveral Jupyter notebooks that demonstrate most of the available features\nof the code can be found \n[here](https://github.com/joshspeagle/dynesty/tree/master/demos).\n\n### Attribution\n\nIf you find the package useful in your research, please cite at least *both* of these references:\n* The original paper [Speagle (2020)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.3132S/abstract)\n* The python implementation [Koposov et al. (2023)](https://doi.org/10.5281/zenodo.3348367) (the citation info is at the bottom of the page on the right)\n\n\nand ideally also papers describing the underlying methods (see the [documentation](https://dynesty.readthedocs.io/en/latest/references.html) for more details)\n\n### Reporting issues\n\nIf you want to report issues, or have questions, please do that on [github](https://github.com/joshspeagle/dynesty/issues).\n\n### Contributing\n\nPatches and contributions are very welcome! Please see [CONTRIBUTING.md](https://github.com/joshspeagle/dynesty/blob/master/CONTRIBUTING.md) for more details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A dynamic nested sampling package for computing Bayesian posteriors and evidences.",
    "version": "2.1.5",
    "project_urls": {
        "Homepage": "https://github.com/joshspeagle/dynesty"
    },
    "split_keywords": [
        "nested sampling",
        " dynamic",
        " monte carlo",
        " bayesian",
        " inference",
        " modeling"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c801db367a6adfa49d280cda609ad5d94b9b257058b4499c59633e6d15c5e552",
                "md5": "0840aa8b594a7e2cc7b902febb999863",
                "sha256": "c1d20f300d6e0fb64675f01683d7511b181d2a5ac372295b1fe5f4410670530b"
            },
            "downloads": -1,
            "filename": "dynesty-2.1.5-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0840aa8b594a7e2cc7b902febb999863",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 108214,
            "upload_time": "2024-12-17T20:07:42",
            "upload_time_iso_8601": "2024-12-17T20:07:42.296869Z",
            "url": "https://files.pythonhosted.org/packages/c8/01/db367a6adfa49d280cda609ad5d94b9b257058b4499c59633e6d15c5e552/dynesty-2.1.5-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d0206a8a27d803900ad8fdfe7d730a66d2304f3fda17616eb8debe10085fa81a",
                "md5": "ee3f96d0b20724c4918bfbc33cdf4f77",
                "sha256": "fd742d483a1f78086bc8a36316594fa1e18eeb3a27f8293fca147b377b5cd311"
            },
            "downloads": -1,
            "filename": "dynesty-2.1.5.tar.gz",
            "has_sig": false,
            "md5_digest": "ee3f96d0b20724c4918bfbc33cdf4f77",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 31034553,
            "upload_time": "2024-12-17T20:07:48",
            "upload_time_iso_8601": "2024-12-17T20:07:48.666887Z",
            "url": "https://files.pythonhosted.org/packages/d0/20/6a8a27d803900ad8fdfe7d730a66d2304f3fda17616eb8debe10085fa81a/dynesty-2.1.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-17 20:07:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "joshspeagle",
    "github_project": "dynesty",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.17.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.4.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": []
        }
    ],
    "lcname": "dynesty"
}
        
Elapsed time: 0.42929s