[![Build Status](https://github.com/joshspeagle/dynesty/workflows/Dynesty/badge.svg)](https://github.com/joshspeagle/dynesty/actions)
[![Documentation Status](https://readthedocs.org/projects/dynesty/badge/?version=latest)](https://dynesty.readthedocs.io/en/latest/?badge=latest)
[![Coverage Status](https://coveralls.io/repos/github/joshspeagle/dynesty/badge.svg?branch=master)](https://coveralls.io/github/joshspeagle/dynesty?branch=master)[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.6609296.svg)](https://doi.org/10.5281/zenodo.3348367)
dynesty
=======
![dynesty in action](https://github.com/joshspeagle/dynesty/blob/master/docs/images/title.gif)
A Dynamic Nested Sampling package for computing Bayesian posteriors and
evidences. Pure Python. MIT license.
### Documentation
Documentation can be found [here](https://dynesty.readthedocs.io).
### Installation
The most stable release of `dynesty` can be installed
through [pip](https://pip.pypa.io/en/stable) via
```
pip install dynesty
```
The current (less stable) development version can be installed by running
```
python setup.py install
```
from inside the repository.
### Demos
Several Jupyter notebooks that demonstrate most of the available features
of the code can be found
[here](https://github.com/joshspeagle/dynesty/tree/master/demos).
### Attribution
If you find the package useful in your research, please cite at least *both* of these references:
* The original paper [Speagle (2020)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.3132S/abstract)
* The python implementation [Koposov et al. (2023)](https://doi.org/10.5281/zenodo.3348367) (the citation info is at the bottom of the page on the right)
and ideally also papers describing the underlying methods (see the [documentation](https://dynesty.readthedocs.io/en/latest/references.html) for more details)
### Reporting issues
If you want to report issues, or have questions, please do that on [github](https://github.com/joshspeagle/dynesty/issues).
### Contributing
Patches and contributions are very welcome! Please see [CONTRIBUTING.md](https://github.com/joshspeagle/dynesty/blob/master/CONTRIBUTING.md) for more details.
Raw data
{
"_id": null,
"home_page": "https://github.com/joshspeagle/dynesty",
"name": "dynesty",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "nested sampling, dynamic, monte carlo, bayesian, inference, modeling",
"author": "Joshua S Speagle, Sergey E Koposov",
"author_email": "j.speagle@utoronto.ca",
"download_url": "https://files.pythonhosted.org/packages/66/30/39fc3553893a81e14caba6db481523660d52a7d538cf5913d2bf73a692d4/dynesty-2.1.4.tar.gz",
"platform": null,
"description": "[![Build Status](https://github.com/joshspeagle/dynesty/workflows/Dynesty/badge.svg)](https://github.com/joshspeagle/dynesty/actions)\n[![Documentation Status](https://readthedocs.org/projects/dynesty/badge/?version=latest)](https://dynesty.readthedocs.io/en/latest/?badge=latest)\n[![Coverage Status](https://coveralls.io/repos/github/joshspeagle/dynesty/badge.svg?branch=master)](https://coveralls.io/github/joshspeagle/dynesty?branch=master)[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.6609296.svg)](https://doi.org/10.5281/zenodo.3348367)\n\n\ndynesty\n=======\n\n![dynesty in action](https://github.com/joshspeagle/dynesty/blob/master/docs/images/title.gif)\n\nA Dynamic Nested Sampling package for computing Bayesian posteriors and\nevidences. Pure Python. MIT license.\n\n### Documentation\nDocumentation can be found [here](https://dynesty.readthedocs.io).\n\n### Installation\nThe most stable release of `dynesty` can be installed\nthrough [pip](https://pip.pypa.io/en/stable) via\n```\npip install dynesty\n```\nThe current (less stable) development version can be installed by running\n```\npython setup.py install\n```\nfrom inside the repository.\n\n### Demos\nSeveral Jupyter notebooks that demonstrate most of the available features\nof the code can be found \n[here](https://github.com/joshspeagle/dynesty/tree/master/demos).\n\n### Attribution\n\nIf you find the package useful in your research, please cite at least *both* of these references:\n* The original paper [Speagle (2020)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.3132S/abstract)\n* The python implementation [Koposov et al. (2023)](https://doi.org/10.5281/zenodo.3348367) (the citation info is at the bottom of the page on the right)\n\n\nand ideally also papers describing the underlying methods (see the [documentation](https://dynesty.readthedocs.io/en/latest/references.html) for more details)\n\n### Reporting issues\n\nIf you want to report issues, or have questions, please do that on [github](https://github.com/joshspeagle/dynesty/issues).\n\n### Contributing\n\nPatches and contributions are very welcome! Please see [CONTRIBUTING.md](https://github.com/joshspeagle/dynesty/blob/master/CONTRIBUTING.md) for more details.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A dynamic nested sampling package for computing Bayesian posteriors and evidences.",
"version": "2.1.4",
"project_urls": {
"Homepage": "https://github.com/joshspeagle/dynesty"
},
"split_keywords": [
"nested sampling",
" dynamic",
" monte carlo",
" bayesian",
" inference",
" modeling"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "bd0514ff4092df9e4937b5944c0f6cca461c5a211435f6eed1af0a76bc6575da",
"md5": "3ca43d8be930ab50858194b69660734b",
"sha256": "110a13ade7323cdfa8dae7faf52d08a1542f8d90c289d549efd4923d9e55dff1"
},
"downloads": -1,
"filename": "dynesty-2.1.4-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "3ca43d8be930ab50858194b69660734b",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 108124,
"upload_time": "2024-06-25T21:21:31",
"upload_time_iso_8601": "2024-06-25T21:21:31.057982Z",
"url": "https://files.pythonhosted.org/packages/bd/05/14ff4092df9e4937b5944c0f6cca461c5a211435f6eed1af0a76bc6575da/dynesty-2.1.4-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "663039fc3553893a81e14caba6db481523660d52a7d538cf5913d2bf73a692d4",
"md5": "f2f4a83f1ff34516f779662a5d366b59",
"sha256": "cd98cfded1af86487b76dba2bd89824c803f1e0c451fcb14a0b208c5ca1a8004"
},
"downloads": -1,
"filename": "dynesty-2.1.4.tar.gz",
"has_sig": false,
"md5_digest": "f2f4a83f1ff34516f779662a5d366b59",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 129150,
"upload_time": "2024-06-25T21:21:32",
"upload_time_iso_8601": "2024-06-25T21:21:32.797630Z",
"url": "https://files.pythonhosted.org/packages/66/30/39fc3553893a81e14caba6db481523660d52a7d538cf5913d2bf73a692d4/dynesty-2.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-25 21:21:32",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "joshspeagle",
"github_project": "dynesty",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"requirements": [],
"lcname": "dynesty"
}