[![Build Status](https://github.com/joshspeagle/dynesty/actions/workflows/test.yml/badge.svg)](https://github.com/joshspeagle/dynesty/actions/)
[![Documentation Status](https://readthedocs.org/projects/dynesty/badge/?version=latest)](https://dynesty.readthedocs.io/en/latest/?badge=latest)
[![Coverage Status](https://coveralls.io/repos/github/joshspeagle/dynesty/badge.svg?branch=master)](https://coveralls.io/github/joshspeagle/dynesty?branch=master)[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.6609296.svg)](https://doi.org/10.5281/zenodo.3348367)
dynesty
=======
![dynesty in action](https://github.com/joshspeagle/dynesty/blob/master/docs/images/title.gif)
A Dynamic Nested Sampling package for computing Bayesian posteriors and
evidences. Pure Python. MIT license.
### Documentation
Documentation can be found [here](https://dynesty.readthedocs.io).
### Installation
The most stable release of `dynesty` can be installed
through [pip](https://pip.pypa.io/en/stable) via
```
pip install dynesty
```
The current (less stable) development version can be installed by running
```
python setup.py install
```
from inside the repository.
### Demos
Several Jupyter notebooks that demonstrate most of the available features
of the code can be found
[here](https://github.com/joshspeagle/dynesty/tree/master/demos).
### Attribution
If you find the package useful in your research, please cite at least *both* of these references:
* The original paper [Speagle (2020)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.3132S/abstract)
* The python implementation [Koposov et al. (2023)](https://doi.org/10.5281/zenodo.3348367) (the citation info is at the bottom of the page on the right)
and ideally also papers describing the underlying methods (see the [documentation](https://dynesty.readthedocs.io/en/latest/references.html) for more details)
### Reporting issues
If you want to report issues, or have questions, please do that on [github](https://github.com/joshspeagle/dynesty/issues).
### Contributing
Patches and contributions are very welcome! Please see [CONTRIBUTING.md](https://github.com/joshspeagle/dynesty/blob/master/CONTRIBUTING.md) for more details.
Raw data
{
"_id": null,
"home_page": "https://github.com/joshspeagle/dynesty",
"name": "dynesty",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "nested sampling, dynamic, monte carlo, bayesian, inference, modeling",
"author": "Joshua S Speagle, Sergey E Koposov",
"author_email": "j.speagle@utoronto.ca",
"download_url": "https://files.pythonhosted.org/packages/d0/20/6a8a27d803900ad8fdfe7d730a66d2304f3fda17616eb8debe10085fa81a/dynesty-2.1.5.tar.gz",
"platform": null,
"description": "[![Build Status](https://github.com/joshspeagle/dynesty/actions/workflows/test.yml/badge.svg)](https://github.com/joshspeagle/dynesty/actions/)\n[![Documentation Status](https://readthedocs.org/projects/dynesty/badge/?version=latest)](https://dynesty.readthedocs.io/en/latest/?badge=latest)\n[![Coverage Status](https://coveralls.io/repos/github/joshspeagle/dynesty/badge.svg?branch=master)](https://coveralls.io/github/joshspeagle/dynesty?branch=master)[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.6609296.svg)](https://doi.org/10.5281/zenodo.3348367)\n\n\ndynesty\n=======\n\n![dynesty in action](https://github.com/joshspeagle/dynesty/blob/master/docs/images/title.gif)\n\nA Dynamic Nested Sampling package for computing Bayesian posteriors and\nevidences. Pure Python. MIT license.\n\n### Documentation\nDocumentation can be found [here](https://dynesty.readthedocs.io).\n\n### Installation\nThe most stable release of `dynesty` can be installed\nthrough [pip](https://pip.pypa.io/en/stable) via\n```\npip install dynesty\n```\nThe current (less stable) development version can be installed by running\n```\npython setup.py install\n```\nfrom inside the repository.\n\n### Demos\nSeveral Jupyter notebooks that demonstrate most of the available features\nof the code can be found \n[here](https://github.com/joshspeagle/dynesty/tree/master/demos).\n\n### Attribution\n\nIf you find the package useful in your research, please cite at least *both* of these references:\n* The original paper [Speagle (2020)](https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.3132S/abstract)\n* The python implementation [Koposov et al. (2023)](https://doi.org/10.5281/zenodo.3348367) (the citation info is at the bottom of the page on the right)\n\n\nand ideally also papers describing the underlying methods (see the [documentation](https://dynesty.readthedocs.io/en/latest/references.html) for more details)\n\n### Reporting issues\n\nIf you want to report issues, or have questions, please do that on [github](https://github.com/joshspeagle/dynesty/issues).\n\n### Contributing\n\nPatches and contributions are very welcome! Please see [CONTRIBUTING.md](https://github.com/joshspeagle/dynesty/blob/master/CONTRIBUTING.md) for more details.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A dynamic nested sampling package for computing Bayesian posteriors and evidences.",
"version": "2.1.5",
"project_urls": {
"Homepage": "https://github.com/joshspeagle/dynesty"
},
"split_keywords": [
"nested sampling",
" dynamic",
" monte carlo",
" bayesian",
" inference",
" modeling"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c801db367a6adfa49d280cda609ad5d94b9b257058b4499c59633e6d15c5e552",
"md5": "0840aa8b594a7e2cc7b902febb999863",
"sha256": "c1d20f300d6e0fb64675f01683d7511b181d2a5ac372295b1fe5f4410670530b"
},
"downloads": -1,
"filename": "dynesty-2.1.5-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "0840aa8b594a7e2cc7b902febb999863",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 108214,
"upload_time": "2024-12-17T20:07:42",
"upload_time_iso_8601": "2024-12-17T20:07:42.296869Z",
"url": "https://files.pythonhosted.org/packages/c8/01/db367a6adfa49d280cda609ad5d94b9b257058b4499c59633e6d15c5e552/dynesty-2.1.5-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d0206a8a27d803900ad8fdfe7d730a66d2304f3fda17616eb8debe10085fa81a",
"md5": "ee3f96d0b20724c4918bfbc33cdf4f77",
"sha256": "fd742d483a1f78086bc8a36316594fa1e18eeb3a27f8293fca147b377b5cd311"
},
"downloads": -1,
"filename": "dynesty-2.1.5.tar.gz",
"has_sig": false,
"md5_digest": "ee3f96d0b20724c4918bfbc33cdf4f77",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 31034553,
"upload_time": "2024-12-17T20:07:48",
"upload_time_iso_8601": "2024-12-17T20:07:48.666887Z",
"url": "https://files.pythonhosted.org/packages/d0/20/6a8a27d803900ad8fdfe7d730a66d2304f3fda17616eb8debe10085fa81a/dynesty-2.1.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-17 20:07:48",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "joshspeagle",
"github_project": "dynesty",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"requirements": [
{
"name": "numpy",
"specs": [
[
">=",
"1.17.0"
]
]
},
{
"name": "scipy",
"specs": [
[
">=",
"1.4.0"
]
]
},
{
"name": "matplotlib",
"specs": []
}
],
"lcname": "dynesty"
}