# ENVironmental data quality ASSurance
ENVironmental data quality ASSurance for generating high quality data products.
## Installation
`pip install envass`
## Usage
```python
import numpy as np
from envass import qualityassurance
variable = np.array([1, "g", 16, 12.0, False, 0, 22.12, 5.77])
time = np.array(range(len(variable)))
checks={"numeric":{}, "IQR":{"factor":4}, "IQR_window":{}}
qa = qualityassurance(variable, time, **checks)
```
Raw data
{
"_id": null,
"home_page": "https://github.com/eawag-surface-waters-research/envass",
"name": "envass",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,ENVASS,quality assurance,environmental data",
"author": "James Runnalls",
"author_email": "<james.runnalls@eawag.ch>",
"download_url": "https://files.pythonhosted.org/packages/d5/de/9beab193cfba6dc34840a25ddc692ac515f9a964eda11f704c712fb57a70/envass-0.1.0.tar.gz",
"platform": null,
"description": "# ENVironmental data quality ASSurance\n\nENVironmental data quality ASSurance for generating high quality data products.\n\n## Installation\n\n`pip install envass`\n\n## Usage\n\n```python\n\nimport numpy as np\nfrom envass import qualityassurance\n\nvariable = np.array([1, \"g\", 16, 12.0, False, 0, 22.12, 5.77])\ntime = np.array(range(len(variable)))\nchecks={\"numeric\":{}, \"IQR\":{\"factor\":4}, \"IQR_window\":{}}\n\nqa = qualityassurance(variable, time, **checks)\n```\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "ENVASS ENVironmental data quality ASSurance.",
"version": "0.1.0",
"split_keywords": [
"python",
"envass",
"quality assurance",
"environmental data"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "2be1720cd670c5c3600d6751c1ca97e6",
"sha256": "981713c0f193337b153d4203b3d84374aa357afebc96610bc9d40274b9b36e34"
},
"downloads": -1,
"filename": "envass-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2be1720cd670c5c3600d6751c1ca97e6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 6816,
"upload_time": "2022-11-30T09:40:32",
"upload_time_iso_8601": "2022-11-30T09:40:32.830940Z",
"url": "https://files.pythonhosted.org/packages/cd/cb/7f98a7f661a303730b6667381af75841997aef027309d687d2852bdbeb8b/envass-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "ae22c51eecf1d78b81584ad782bd982e",
"sha256": "a0c3d6643b2a104f3f32d18ac93a93f4ba564c5e1c76b09019c87af137ac004b"
},
"downloads": -1,
"filename": "envass-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "ae22c51eecf1d78b81584ad782bd982e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 5776,
"upload_time": "2022-11-30T09:40:42",
"upload_time_iso_8601": "2022-11-30T09:40:42.825558Z",
"url": "https://files.pythonhosted.org/packages/d5/de/9beab193cfba6dc34840a25ddc692ac515f9a964eda11f704c712fb57a70/envass-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-11-30 09:40:42",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "eawag-surface-waters-research",
"github_project": "envass",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "ipywidgets",
"specs": [
[
">=",
"7.6.5"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.19.5"
]
]
},
{
"name": "pandas",
"specs": [
[
">=",
"1.1.5"
]
]
},
{
"name": "plotly",
"specs": [
[
">=",
"5.6.0"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
">=",
"0.24.2"
]
]
},
{
"name": "scipy",
"specs": [
[
">=",
"1.5.4"
]
]
}
],
"lcname": "envass"
}