eqnlint


Nameeqnlint JSON
Version 0.2.5 PyPI version JSON
download
home_pageNone
SummaryAudits LaTeX papers for units, dimensions, symbols, citations, context, opacity, and prose.
upload_time2025-08-10 21:41:45
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords latex audit linter units dimensions citations prose
VCS
bugtrack_url
requirements openai argparse python-dotenv
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # eqnlint

`eqnlint` is a scientific LaTeX equation and text auditing toolkit.  
It runs a suite of AI-powered audits to check for consistency, correctness, and plausibility in academic documents.

## Installation

```bash
pip install eqnlint
```

> Requires Python 3.9+

## Command Line Usage

Run **all audits**:

```bash
eqnlint -f my_paper.tex
```

Run an **individual audit**:

```bash
audit-units -f my_paper.tex
audit-symbolic -f my_paper.tex
audit-context -f my_paper.tex
audit-prose -f my_paper.tex
audit-citation -f my_paper.tex
audit-opacity -f my_paper.tex
audit-dimensional -f my_paper.tex
```

## Available Audits

- **citation_audit** – Check LaTeX citations for presence, correctness, and plausibility.
- **context_audit** – Verify that citations match their surrounding context.
- **dimensional_audit** – Check equations for dimensional consistency.
- **opacity_audit** – Identify undefined or unclear notation.
- **prose_audit** – Review surrounding text for clarity and academic tone.
- **symbolic_audit** – Audit symbolic math for correctness.
- **units_audit** – Verify units in equations and expressions.

## Example

```bash
eqnlint -v -f ~/Documents/MyPaper.tex
```

Outputs audit results in human-readable and/or JSON formats.

## License

MIT License. See [LICENSE](LICENSE) for details.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "eqnlint",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "latex, audit, linter, units, dimensions, citations, prose",
    "author": null,
    "author_email": "John Ryan <tambotitree@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/42/81/8d6f5de026b3f7027ede3e807063ba72be324b1adf852027ff80f88e6530/eqnlint-0.2.5.tar.gz",
    "platform": null,
    "description": "# eqnlint\n\n`eqnlint` is a scientific LaTeX equation and text auditing toolkit.  \nIt runs a suite of AI-powered audits to check for consistency, correctness, and plausibility in academic documents.\n\n## Installation\n\n```bash\npip install eqnlint\n```\n\n> Requires Python 3.9+\n\n## Command Line Usage\n\nRun **all audits**:\n\n```bash\neqnlint -f my_paper.tex\n```\n\nRun an **individual audit**:\n\n```bash\naudit-units -f my_paper.tex\naudit-symbolic -f my_paper.tex\naudit-context -f my_paper.tex\naudit-prose -f my_paper.tex\naudit-citation -f my_paper.tex\naudit-opacity -f my_paper.tex\naudit-dimensional -f my_paper.tex\n```\n\n## Available Audits\n\n- **citation_audit** \u2013 Check LaTeX citations for presence, correctness, and plausibility.\n- **context_audit** \u2013 Verify that citations match their surrounding context.\n- **dimensional_audit** \u2013 Check equations for dimensional consistency.\n- **opacity_audit** \u2013 Identify undefined or unclear notation.\n- **prose_audit** \u2013 Review surrounding text for clarity and academic tone.\n- **symbolic_audit** \u2013 Audit symbolic math for correctness.\n- **units_audit** \u2013 Verify units in equations and expressions.\n\n## Example\n\n```bash\neqnlint -v -f ~/Documents/MyPaper.tex\n```\n\nOutputs audit results in human-readable and/or JSON formats.\n\n## License\n\nMIT License. See [LICENSE](LICENSE) for details.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Audits LaTeX papers for units, dimensions, symbols, citations, context, opacity, and prose.",
    "version": "0.2.5",
    "project_urls": {
        "Homepage": "https://github.com/tambotitree/eqnlint-project",
        "Issues": "https://github.com/tambotitree/eqnlint-project/issues"
    },
    "split_keywords": [
        "latex",
        " audit",
        " linter",
        " units",
        " dimensions",
        " citations",
        " prose"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "162c71f3d21895f65a39d89564619fdbe884a880f6efd33e72b6733c32c62403",
                "md5": "76c95cf26fdbc92a61b2a8b738c2604d",
                "sha256": "997fba440c806df7fcec6f0103dc1abe42c01000d131ecad3a0e49b9a9b6f852"
            },
            "downloads": -1,
            "filename": "eqnlint-0.2.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "76c95cf26fdbc92a61b2a8b738c2604d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 26608,
            "upload_time": "2025-08-10T21:41:43",
            "upload_time_iso_8601": "2025-08-10T21:41:43.552315Z",
            "url": "https://files.pythonhosted.org/packages/16/2c/71f3d21895f65a39d89564619fdbe884a880f6efd33e72b6733c32c62403/eqnlint-0.2.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "42818d6f5de026b3f7027ede3e807063ba72be324b1adf852027ff80f88e6530",
                "md5": "e24af9d4f3e07f3d6c466685e8474e9a",
                "sha256": "87be7aa708886b9c74ef54031addd80703610405cccfefe20ae8709c35487381"
            },
            "downloads": -1,
            "filename": "eqnlint-0.2.5.tar.gz",
            "has_sig": false,
            "md5_digest": "e24af9d4f3e07f3d6c466685e8474e9a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 44044,
            "upload_time": "2025-08-10T21:41:45",
            "upload_time_iso_8601": "2025-08-10T21:41:45.168727Z",
            "url": "https://files.pythonhosted.org/packages/42/81/8d6f5de026b3f7027ede3e807063ba72be324b1adf852027ff80f88e6530/eqnlint-0.2.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-10 21:41:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tambotitree",
    "github_project": "eqnlint-project",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "openai",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "argparse",
            "specs": []
        },
        {
            "name": "python-dotenv",
            "specs": []
        }
    ],
    "lcname": "eqnlint"
}
        
Elapsed time: 0.46931s