equal-odds


Nameequal-odds JSON
Version 0.0.7 PyPI version JSON
download
home_pagehttps://github.com/AndreFCruz/equal-odds
Summary_PACKAGE UNDER CONSTRUCTION_
upload_time2023-05-30 09:34:25
maintainer
docs_urlNone
authorAndreFCruz
requires_python>=3.8
licenseMIT
keywords ml optimization fairness
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # equal-odds

![PyPI publishing status](https://github.com/AndreFCruz/equal-odds/actions/workflows/python-publish.yml/badge.svg)
![PyPI version](https://badgen.net/pypi/v/equal-odds)
![OSI license](https://badgen.net/pypi/license/equal-odds)
![Python compatibility](https://badgen.net/pypi/python/equal-odds)
<!-- ![PyPI version](https://img.shields.io/pypi/v/equal-odds) -->
<!-- ![OSI license](https://img.shields.io/pypi/l/equal-odds) -->
<!-- ![Compatible python versions](https://img.shields.io/pypi/pyversions/equal-odds) -->

Fast postprocessing of any score-based predictor to meet fairness criteria.

The `equal-odds` package can achieve strict or relaxed fairness constraint fulfillment, 
which can be useful to compare ML models at equal fairness levels.


## Installing

Install package from [PyPI](https://pypi.org/project/equal-odds/):
```
pip install equal-odds
```

Or, for development, you can clone the repo and install from local sources:
```
git clone https://github.com/AndreFCruz/equal-odds.git
pip install ./equal-odds
```


## Getting started

```py
# Given any trained model that outputs real-valued scores
fair_clf = RelaxedEqualOdds(
    predictor=lambda X: model.predict_proba(X)[:, -1],   # for sklearn API
    # predictor=model,  # use this for a callable model
    tolerance=0.05,     # fairness constraint tolerance
)

# Fit the fairness adjustment on some data
# This will find the optimal _fair classifier_
fair_clf.fit(X=X, y=y, group=group)

# Now you can use `fair_clf` as any other classifier
# You have to provide group information to compute fair predictions
y_pred_test = fair_clf(X=X_test, group=group_test)
```


## How it works

Given a callable score-based predictor (i.e., `y_pred = predictor(X)`), and some `(X, Y, S)` data to fit, `RelaxedEqualOdds` will:
1. Compute group-specific ROC curves and their convex hulls;
2. Compute the `r`-relaxed optimal solution for the chosen fairness criterion (using [cvxpy](https://www.cvxpy.org));
3. Find the set of group-specific binary classifiers that match the optimal solution found.
    - each group-specific classifier is made up of (possibly randomized) group-specific thresholds over the given predictor;
    - if a group's ROC point is in the interior of its ROC curve, partial randomization of its predictions may be necessary.


## Implementation road-map

We welcome community contributions for [cvxpy](https://www.cvxpy.org) implementations of other fairness constraints.

Currently implemented fairness constraints:
- [x] equality of odds [(Hardt et al., 2016)](https://proceedings.neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf);
  - i.e., equal group-specific TPR and FPR;
<!--
- [ ] equal opportunity;
  - i.e., equal group-specific TPR;
- [ ] demographic parity;
  - i.e., equal group-specific predicted prevalence;
-->

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/AndreFCruz/equal-odds",
    "name": "equal-odds",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "ml,optimization,fairness",
    "author": "AndreFCruz",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/a5/d9/29f4d16ec6861429264298c9f308062c6896a6c72dce81c64328013b04af/equal-odds-0.0.7.tar.gz",
    "platform": null,
    "description": "# equal-odds\n\n![PyPI publishing status](https://github.com/AndreFCruz/equal-odds/actions/workflows/python-publish.yml/badge.svg)\n![PyPI version](https://badgen.net/pypi/v/equal-odds)\n![OSI license](https://badgen.net/pypi/license/equal-odds)\n![Python compatibility](https://badgen.net/pypi/python/equal-odds)\n<!-- ![PyPI version](https://img.shields.io/pypi/v/equal-odds) -->\n<!-- ![OSI license](https://img.shields.io/pypi/l/equal-odds) -->\n<!-- ![Compatible python versions](https://img.shields.io/pypi/pyversions/equal-odds) -->\n\nFast postprocessing of any score-based predictor to meet fairness criteria.\n\nThe `equal-odds` package can achieve strict or relaxed fairness constraint fulfillment, \nwhich can be useful to compare ML models at equal fairness levels.\n\n\n## Installing\n\nInstall package from [PyPI](https://pypi.org/project/equal-odds/):\n```\npip install equal-odds\n```\n\nOr, for development, you can clone the repo and install from local sources:\n```\ngit clone https://github.com/AndreFCruz/equal-odds.git\npip install ./equal-odds\n```\n\n\n## Getting started\n\n```py\n# Given any trained model that outputs real-valued scores\nfair_clf = RelaxedEqualOdds(\n    predictor=lambda X: model.predict_proba(X)[:, -1],   # for sklearn API\n    # predictor=model,  # use this for a callable model\n    tolerance=0.05,     # fairness constraint tolerance\n)\n\n# Fit the fairness adjustment on some data\n# This will find the optimal _fair classifier_\nfair_clf.fit(X=X, y=y, group=group)\n\n# Now you can use `fair_clf` as any other classifier\n# You have to provide group information to compute fair predictions\ny_pred_test = fair_clf(X=X_test, group=group_test)\n```\n\n\n## How it works\n\nGiven a callable score-based predictor (i.e., `y_pred = predictor(X)`), and some `(X, Y, S)` data to fit, `RelaxedEqualOdds` will:\n1. Compute group-specific ROC curves and their convex hulls;\n2. Compute the `r`-relaxed optimal solution for the chosen fairness criterion (using [cvxpy](https://www.cvxpy.org));\n3. Find the set of group-specific binary classifiers that match the optimal solution found.\n    - each group-specific classifier is made up of (possibly randomized) group-specific thresholds over the given predictor;\n    - if a group's ROC point is in the interior of its ROC curve, partial randomization of its predictions may be necessary.\n\n\n## Implementation road-map\n\nWe welcome community contributions for [cvxpy](https://www.cvxpy.org) implementations of other fairness constraints.\n\nCurrently implemented fairness constraints:\n- [x] equality of odds [(Hardt et al., 2016)](https://proceedings.neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf);\n  - i.e., equal group-specific TPR and FPR;\n<!--\n- [ ] equal opportunity;\n  - i.e., equal group-specific TPR;\n- [ ] demographic parity;\n  - i.e., equal group-specific predicted prevalence;\n-->\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "_PACKAGE UNDER CONSTRUCTION_",
    "version": "0.0.7",
    "project_urls": {
        "Homepage": "https://github.com/AndreFCruz/equal-odds"
    },
    "split_keywords": [
        "ml",
        "optimization",
        "fairness"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c9cefa7565e3200796145567762cb631539aef14d4000dcec319b5ea5e212685",
                "md5": "d9a54d84b3bc397b43458774047b517b",
                "sha256": "c5ac6913e9a1eb360c6bd54c1ae6c657e2c8281485ba60094fc2ad5376ef0461"
            },
            "downloads": -1,
            "filename": "equal_odds-0.0.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d9a54d84b3bc397b43458774047b517b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 18183,
            "upload_time": "2023-05-30T09:34:22",
            "upload_time_iso_8601": "2023-05-30T09:34:22.366888Z",
            "url": "https://files.pythonhosted.org/packages/c9/ce/fa7565e3200796145567762cb631539aef14d4000dcec319b5ea5e212685/equal_odds-0.0.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a5d929f4d16ec6861429264298c9f308062c6896a6c72dce81c64328013b04af",
                "md5": "d5634abfbc272b455d28944674fe400a",
                "sha256": "f66a1b2f583271f05a8ef5ca35f1fd27960fa94f47daaa5c0457c549f421d949"
            },
            "downloads": -1,
            "filename": "equal-odds-0.0.7.tar.gz",
            "has_sig": false,
            "md5_digest": "d5634abfbc272b455d28944674fe400a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 18007,
            "upload_time": "2023-05-30T09:34:25",
            "upload_time_iso_8601": "2023-05-30T09:34:25.663995Z",
            "url": "https://files.pythonhosted.org/packages/a5/d9/29f4d16ec6861429264298c9f308062c6896a6c72dce81c64328013b04af/equal-odds-0.0.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-30 09:34:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "AndreFCruz",
    "github_project": "equal-odds",
    "github_not_found": true,
    "lcname": "equal-odds"
}
        
Elapsed time: 4.68827s