equine-webapp


Nameequine-webapp JSON
Version 0.1.dev82 PyPI version JSON
download
home_pageNone
SummaryCompanion web application for EQUINE^2: Establishing Quantified Uncertainty for Neural Networks
upload_time2025-02-06 21:54:56
maintainerAllan Wollaber, Steven Jorgensen, Harry Li
docs_urlNone
authorAllan Wollaber, Steven Jorgensen, Harry Li
requires_python>=3.9
licenseMIT
keywords machine learning robustness pytorch responsible ai
VCS
bugtrack_url
requirements ariadne equine flask flask-cors numpy pandas scikit-learn torch torchvision umap-learn zadu
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # EQUINE Webapp

<p align="center">
  <img width="500" src="client/public/EQUI(NE)^2_Full_Logo.svg">
</p>

![TypeScript](https://badgen.net/badge/-/TypeScript/blue?icon=typescript&label)
<p align="center">
  This is a web application utilizing EQUINE for neural network uncertainty quantification through a visual user interface. The webapp allows you to upload your own model and data, and let the server retrain the model with EQUINE. The visualization dashboard also allows you to analyze your samples and view uncertainty quantification visualizations to explain model uncertainty.
</p>

<p align="center">
  The EQUINE repository is here https://github.com/mit-ll-responsible-ai/equine
</p>

## ScatterUQ at IEEE VIS 2023
We presented ScatterUQ at IEEE VIS 2023: https://ieeexplore.ieee.org/document/10360884

Our data and analysis script can be found in this release: https://github.com/mit-ll-responsible-ai/equine-webapp/releases/tag/ScatterUQ-VIS-2023-Data

## React Frontend

### ScatterUQ Static Demo
We deployed the frontend application to GitHub pages. You can view a static demo of ScatterUQ here:

https://mit-ll-responsible-ai.github.io/equine-webapp/demo

[![ScatterUQ Out of Distribution Example](client/public/ood.png)](https://mit-ll-responsible-ai.github.io/equine-webapp/demo)

### Development Frontend Server Setup
1. Install node packages
```
cd client
npm i
```

2. Start the development server
```
npm run dev
```


## Python Flask Server

### Development Flask Server Setup
1. Create a new Anaconda environment
```
conda create --name equine-webapp python=3.10
```

2. Activate your new environment
```
conda activate equine-webapp
```

3. Install the necessary packages from pip
```
pip install -r requirements.txt
```

4. Start the Flask server
```
python start_dev_server.py
```

### Flask Testing
If you'd like to run our flask tests:
1. Install pytest
```
pip install pytest
```

2. Run pytest
```
python -m pytest
```

## Bibliography

```
@INPROCEEDINGS{10360884,
  author={Li, Harry X. and Jorgensen, Steven and Holodnak, John and Wollaber, Allan B.},
  booktitle={2023 IEEE Visualization and Visual Analytics (VIS)}, 
  title={ScatterUQ: Interactive Uncertainty Visualizations for Multiclass Deep Learning Problems}, 
  year={2023},
  volume={},
  number={},
  pages={246-250},
  keywords={Deep learning;Dimensionality reduction;Training;Uncertainty;Visual analytics;Soft sensors;Interactive systems;Uncertainty quantification;Machine learning;Dimensionality reduction;Visualization;Explainable AI},
  doi={10.1109/VIS54172.2023.00058}}
```

## Disclaimer

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

© 2023 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

- Subject to FAR 52.227-11 – Patent Rights – Ownership by the Contractor (May 2014)
- SPDX-License-Identifier: MIT

This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.

The software/firmware is provided to you on an As-Is basis.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "equine-webapp",
    "maintainer": "Allan Wollaber, Steven Jorgensen, Harry Li",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "machine learning, robustness, pytorch, responsible, AI",
    "author": "Allan Wollaber, Steven Jorgensen, Harry Li",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/79/30/a905b089e2e169fa4bf8a20dfbe6c94bf7321012013d33407c3abb195641/equine_webapp-0.1.dev82.tar.gz",
    "platform": null,
    "description": "# EQUINE Webapp\n\n<p align=\"center\">\n  <img width=\"500\" src=\"client/public/EQUI(NE)^2_Full_Logo.svg\">\n</p>\n\n![TypeScript](https://badgen.net/badge/-/TypeScript/blue?icon=typescript&label)\n<p align=\"center\">\n  This is a web application utilizing EQUINE for neural network uncertainty quantification through a visual user interface. The webapp allows you to upload your own model and data, and let the server retrain the model with EQUINE. The visualization dashboard also allows you to analyze your samples and view uncertainty quantification visualizations to explain model uncertainty.\n</p>\n\n<p align=\"center\">\n  The EQUINE repository is here https://github.com/mit-ll-responsible-ai/equine\n</p>\n\n## ScatterUQ at IEEE VIS 2023\nWe presented ScatterUQ at IEEE VIS 2023: https://ieeexplore.ieee.org/document/10360884\n\nOur data and analysis script can be found in this release: https://github.com/mit-ll-responsible-ai/equine-webapp/releases/tag/ScatterUQ-VIS-2023-Data\n\n## React Frontend\n\n### ScatterUQ Static Demo\nWe deployed the frontend application to GitHub pages. You can view a static demo of ScatterUQ here:\n\nhttps://mit-ll-responsible-ai.github.io/equine-webapp/demo\n\n[![ScatterUQ Out of Distribution Example](client/public/ood.png)](https://mit-ll-responsible-ai.github.io/equine-webapp/demo)\n\n### Development Frontend Server Setup\n1. Install node packages\n```\ncd client\nnpm i\n```\n\n2. Start the development server\n```\nnpm run dev\n```\n\n\n## Python Flask Server\n\n### Development Flask Server Setup\n1. Create a new Anaconda environment\n```\nconda create --name equine-webapp python=3.10\n```\n\n2. Activate your new environment\n```\nconda activate equine-webapp\n```\n\n3. Install the necessary packages from pip\n```\npip install -r requirements.txt\n```\n\n4. Start the Flask server\n```\npython start_dev_server.py\n```\n\n### Flask Testing\nIf you'd like to run our flask tests:\n1. Install pytest\n```\npip install pytest\n```\n\n2. Run pytest\n```\npython -m pytest\n```\n\n## Bibliography\n\n```\n@INPROCEEDINGS{10360884,\n  author={Li, Harry X. and Jorgensen, Steven and Holodnak, John and Wollaber, Allan B.},\n  booktitle={2023 IEEE Visualization and Visual Analytics (VIS)}, \n  title={ScatterUQ: Interactive Uncertainty Visualizations for Multiclass Deep Learning Problems}, \n  year={2023},\n  volume={},\n  number={},\n  pages={246-250},\n  keywords={Deep learning;Dimensionality reduction;Training;Uncertainty;Visual analytics;Soft sensors;Interactive systems;Uncertainty quantification;Machine learning;Dimensionality reduction;Visualization;Explainable AI},\n  doi={10.1109/VIS54172.2023.00058}}\n```\n\n## Disclaimer\n\nDISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.\n\n\u00a9 2023 MASSACHUSETTS INSTITUTE OF TECHNOLOGY\n\n- Subject to FAR 52.227-11 \u2013 Patent Rights \u2013 Ownership by the Contractor (May 2014)\n- SPDX-License-Identifier: MIT\n\nThis material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.\n\nThe software/firmware is provided to you on an As-Is basis.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Companion web application for EQUINE^2: Establishing Quantified Uncertainty for Neural Networks",
    "version": "0.1.dev82",
    "project_urls": {
        "Bug Tracker": "https://github.com/mit-ll-responsible-ai/equine-webapp/issues",
        "Homepage": "https://mit-ll-responsible-ai.github.io/equine-webapp/",
        "Source": "https://github.com/mit-ll-responsible-ai/equine-webapp"
    },
    "split_keywords": [
        "machine learning",
        " robustness",
        " pytorch",
        " responsible",
        " ai"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b6ec1fc728cdb2f89ca184413edf03c9338ccaa105b89c533ff38102473b7cb5",
                "md5": "bf9cf909dbe5f2074a75f23181f1bb30",
                "sha256": "e4c33733ca8e8878629882c264764602762e3bf4565f82a716981bba557e10b6"
            },
            "downloads": -1,
            "filename": "equine_webapp-0.1.dev82-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bf9cf909dbe5f2074a75f23181f1bb30",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 1458620,
            "upload_time": "2025-02-06T21:54:49",
            "upload_time_iso_8601": "2025-02-06T21:54:49.765867Z",
            "url": "https://files.pythonhosted.org/packages/b6/ec/1fc728cdb2f89ca184413edf03c9338ccaa105b89c533ff38102473b7cb5/equine_webapp-0.1.dev82-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7930a905b089e2e169fa4bf8a20dfbe6c94bf7321012013d33407c3abb195641",
                "md5": "27039a0b91d5e3c03d2c8411a9d763c8",
                "sha256": "7d9e72e2434a040f6fe6926bd12c9d7ae90e7d78365757b2b2d217a0c694731f"
            },
            "downloads": -1,
            "filename": "equine_webapp-0.1.dev82.tar.gz",
            "has_sig": false,
            "md5_digest": "27039a0b91d5e3c03d2c8411a9d763c8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 2394817,
            "upload_time": "2025-02-06T21:54:56",
            "upload_time_iso_8601": "2025-02-06T21:54:56.578095Z",
            "url": "https://files.pythonhosted.org/packages/79/30/a905b089e2e169fa4bf8a20dfbe6c94bf7321012013d33407c3abb195641/equine_webapp-0.1.dev82.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-06 21:54:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mit-ll-responsible-ai",
    "github_project": "equine-webapp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "ariadne",
            "specs": []
        },
        {
            "name": "equine",
            "specs": [
                [
                    ">=",
                    "0.1.5"
                ]
            ]
        },
        {
            "name": "flask",
            "specs": []
        },
        {
            "name": "flask-cors",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "scikit-learn",
            "specs": []
        },
        {
            "name": "torch",
            "specs": []
        },
        {
            "name": "torchvision",
            "specs": []
        },
        {
            "name": "umap-learn",
            "specs": []
        },
        {
            "name": "zadu",
            "specs": [
                [
                    "==",
                    "0.1.1"
                ]
            ]
        }
    ],
    "lcname": "equine-webapp"
}
        
Elapsed time: 0.40084s