equitrcoder


Nameequitrcoder JSON
Version 2.3.0 PyPI version JSON
download
home_pagehttps://github.com/tanushv/equitrcoder
SummaryModular AI coding assistant supporting single and multi-agent workflows
upload_time2025-08-09 20:12:53
maintainerNone
docs_urlNone
authorEQUITR
requires_python>=3.10
licenseNone
keywords ai coding assistant agent multi-agent llm automation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # EQUITR Coder

Modular AI coding assistant supporting single and multi-agent workflows and an ML-focused researcher mode. Includes an advanced TUI.

## Quick Start

- Install (latest from PyPI):
  ```bash
pip install equitrcoder
  ```
- Optional extras:
  - API server: `pip install "equitrcoder[api]"`
  - TUI (Textual+Rich): `pip install textual rich`

## Configure API keys (env vars)

Set whatever providers you plan to use:
- `OPENAI_API_KEY`
- `ANTHROPIC_API_KEY`
- `OPENROUTER_API_KEY`
- `MOONSHOT_API_KEY`
- `GROQ_API_KEY`

You can also set `CLAUDE_AGENT_MODEL`, `CLAUDE_AGENT_BUDGET`, and `CLAUDE_AGENT_PROFILE` to override defaults.

Export examples (macOS/Linux):
```bash
export OPENAI_API_KEY=sk-...
export ANTHROPIC_API_KEY=...
export OPENROUTER_API_KEY=...
```

## TUI (Interactive)

- Launch TUI:
  ```bash
equitrcoder tui --mode single   # or multi, research
  ```
- Keys:
  - Enter: execute task in current mode (requires task in input field)
  - m: open model selector
  - Ctrl+C: exit
- Research mode fields:
  - Datasets: comma-separated paths
  - Experiments: `name:command; name:command; ...`

Troubleshooting:
- If you see a Textual widget error, ensure `textual` and `rich` are installed.
- If you have no API keys, you can still launch the TUI, but model listings will be minimal and execution may fail when contacting providers.

## CLI

- Single:
  ```bash
equitrcoder single "Build a small API" --model moonshot/kimi-k2-0711-preview
  ```
- Multi:
  ```bash
equitrcoder multi "Ship a feature" --supervisor-model moonshot/kimi-k2-0711-preview \
  --worker-model moonshot/kimi-k2-0711-preview --workers 3 --max-cost 15
  ```
- Research (ML only):
  ```bash
equitrcoder research "Evaluate model X on dataset Y" \
  --supervisor-model moonshot/kimi-k2-0711-preview --worker-model moonshot/kimi-k2-0711-preview \
  --workers 3 --max-cost 12
  ```

## Programmatic Usage

```python
from equitrcoder import EquitrCoder, TaskConfiguration

coder = EquitrCoder(mode="single", repo_path=".")
config = TaskConfiguration(description="Refactor module X", max_cost=2.0, max_iterations=20)
result = await coder.execute_task("Refactor module X", config)
print(result.success, result.cost, result.iterations)
```

- Multi-agent and researcher programmatic configs are available via `MultiAgentTaskConfiguration` and `ResearchTaskConfiguration`.

## API Server

- Start server (requires extras):
  ```bash
equitrcoder api --host 0.0.0.0 --port 8000
  ```
- Endpoints:
  - `GET /` root
  - `GET /health`
  - `GET /tools`
  - `POST /single/execute`
  - `POST /multi/create`
  - `POST /multi/{id}/execute`
  - `GET /multi/{id}/status`
  - `DELETE /multi/{id}`

## Configuration

- Default config lives in `equitrcoder/config/default.yaml`.
- User overrides: `~/.EQUITR-coder/config.yaml`.
- Env overrides supported for selected keys (see code and docs).
- `session.max_context: "auto"` is supported and normalized automatically.

## Examples

See `examples/` for patterns:
- `create_react_website.py`
- `mario_parallel_example.py`
- `research_programmatic_example.py`

## Troubleshooting

- Missing models or keys: ensure relevant env vars are set. The TUI will still load, but execution may fail when contacting providers.
- Textual errors: install TUI deps: `pip install textual rich`.
- Git integration issues: run inside a git repo or disable with `git_enabled=False` in programmatic usage. 

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tanushv/equitrcoder",
    "name": "equitrcoder",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "ai coding assistant agent multi-agent llm automation",
    "author": "EQUITR",
    "author_email": "tanushvanarase@equitr.com",
    "download_url": "https://files.pythonhosted.org/packages/c6/72/22b7923432b3900c61c8d527398c53956c2476153035e40cb4dec6a99af6/equitrcoder-2.3.0.tar.gz",
    "platform": null,
    "description": "# EQUITR Coder\n\nModular AI coding assistant supporting single and multi-agent workflows and an ML-focused researcher mode. Includes an advanced TUI.\n\n## Quick Start\n\n- Install (latest from PyPI):\n  ```bash\npip install equitrcoder\n  ```\n- Optional extras:\n  - API server: `pip install \"equitrcoder[api]\"`\n  - TUI (Textual+Rich): `pip install textual rich`\n\n## Configure API keys (env vars)\n\nSet whatever providers you plan to use:\n- `OPENAI_API_KEY`\n- `ANTHROPIC_API_KEY`\n- `OPENROUTER_API_KEY`\n- `MOONSHOT_API_KEY`\n- `GROQ_API_KEY`\n\nYou can also set `CLAUDE_AGENT_MODEL`, `CLAUDE_AGENT_BUDGET`, and `CLAUDE_AGENT_PROFILE` to override defaults.\n\nExport examples (macOS/Linux):\n```bash\nexport OPENAI_API_KEY=sk-...\nexport ANTHROPIC_API_KEY=...\nexport OPENROUTER_API_KEY=...\n```\n\n## TUI (Interactive)\n\n- Launch TUI:\n  ```bash\nequitrcoder tui --mode single   # or multi, research\n  ```\n- Keys:\n  - Enter: execute task in current mode (requires task in input field)\n  - m: open model selector\n  - Ctrl+C: exit\n- Research mode fields:\n  - Datasets: comma-separated paths\n  - Experiments: `name:command; name:command; ...`\n\nTroubleshooting:\n- If you see a Textual widget error, ensure `textual` and `rich` are installed.\n- If you have no API keys, you can still launch the TUI, but model listings will be minimal and execution may fail when contacting providers.\n\n## CLI\n\n- Single:\n  ```bash\nequitrcoder single \"Build a small API\" --model moonshot/kimi-k2-0711-preview\n  ```\n- Multi:\n  ```bash\nequitrcoder multi \"Ship a feature\" --supervisor-model moonshot/kimi-k2-0711-preview \\\n  --worker-model moonshot/kimi-k2-0711-preview --workers 3 --max-cost 15\n  ```\n- Research (ML only):\n  ```bash\nequitrcoder research \"Evaluate model X on dataset Y\" \\\n  --supervisor-model moonshot/kimi-k2-0711-preview --worker-model moonshot/kimi-k2-0711-preview \\\n  --workers 3 --max-cost 12\n  ```\n\n## Programmatic Usage\n\n```python\nfrom equitrcoder import EquitrCoder, TaskConfiguration\n\ncoder = EquitrCoder(mode=\"single\", repo_path=\".\")\nconfig = TaskConfiguration(description=\"Refactor module X\", max_cost=2.0, max_iterations=20)\nresult = await coder.execute_task(\"Refactor module X\", config)\nprint(result.success, result.cost, result.iterations)\n```\n\n- Multi-agent and researcher programmatic configs are available via `MultiAgentTaskConfiguration` and `ResearchTaskConfiguration`.\n\n## API Server\n\n- Start server (requires extras):\n  ```bash\nequitrcoder api --host 0.0.0.0 --port 8000\n  ```\n- Endpoints:\n  - `GET /` root\n  - `GET /health`\n  - `GET /tools`\n  - `POST /single/execute`\n  - `POST /multi/create`\n  - `POST /multi/{id}/execute`\n  - `GET /multi/{id}/status`\n  - `DELETE /multi/{id}`\n\n## Configuration\n\n- Default config lives in `equitrcoder/config/default.yaml`.\n- User overrides: `~/.EQUITR-coder/config.yaml`.\n- Env overrides supported for selected keys (see code and docs).\n- `session.max_context: \"auto\"` is supported and normalized automatically.\n\n## Examples\n\nSee `examples/` for patterns:\n- `create_react_website.py`\n- `mario_parallel_example.py`\n- `research_programmatic_example.py`\n\n## Troubleshooting\n\n- Missing models or keys: ensure relevant env vars are set. The TUI will still load, but execution may fail when contacting providers.\n- Textual errors: install TUI deps: `pip install textual rich`.\n- Git integration issues: run inside a git repo or disable with `git_enabled=False` in programmatic usage. \n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Modular AI coding assistant supporting single and multi-agent workflows",
    "version": "2.3.0",
    "project_urls": {
        "Bug Reports": "https://github.com/equitr/equitrcoder/issues",
        "Documentation": "https://equitrcoder.readthedocs.io/",
        "Homepage": "https://github.com/tanushv/equitrcoder",
        "Source": "https://github.com/equitr/equitrcoder"
    },
    "split_keywords": [
        "ai",
        "coding",
        "assistant",
        "agent",
        "multi-agent",
        "llm",
        "automation"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "954bd581f2aed3b9183f3fe638fc355d7462265826232386174d25c50cfd8925",
                "md5": "29c3ea2c67cf0c693cf6e7c529a03b2e",
                "sha256": "af4ea013b22fc2128524204a3b1bfd522d1d49079651e189be62cb5dc163e628"
            },
            "downloads": -1,
            "filename": "equitrcoder-2.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "29c3ea2c67cf0c693cf6e7c529a03b2e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 197543,
            "upload_time": "2025-08-09T20:12:52",
            "upload_time_iso_8601": "2025-08-09T20:12:52.249959Z",
            "url": "https://files.pythonhosted.org/packages/95/4b/d581f2aed3b9183f3fe638fc355d7462265826232386174d25c50cfd8925/equitrcoder-2.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c67222b7923432b3900c61c8d527398c53956c2476153035e40cb4dec6a99af6",
                "md5": "54ccca519d33738d9635cead93200dab",
                "sha256": "2ea425a2a34d96c08df5b97654c3c52f3e2801146594b3c8b649fa245dfd26ba"
            },
            "downloads": -1,
            "filename": "equitrcoder-2.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "54ccca519d33738d9635cead93200dab",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 162607,
            "upload_time": "2025-08-09T20:12:53",
            "upload_time_iso_8601": "2025-08-09T20:12:53.452032Z",
            "url": "https://files.pythonhosted.org/packages/c6/72/22b7923432b3900c61c8d527398c53956c2476153035e40cb4dec6a99af6/equitrcoder-2.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-09 20:12:53",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tanushv",
    "github_project": "equitrcoder",
    "github_not_found": true,
    "lcname": "equitrcoder"
}
        
Elapsed time: 0.85453s