evosphere


Nameevosphere JSON
Version 1.0.0 PyPI version JSON
download
home_pageNone
SummaryThe Evolutionary Bio-Compiler: A living engine for programming biology through evolution itself
upload_time2025-08-31 14:13:16
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT
keywords bioinformatics evolution quantum-computing genomics machine-learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # EvoSphere - The Evolutionary Bio-Compiler

[![License: Patent Pending](https://img.shields.io/badge/License-Patent%20Pending-red.svg)](LICENSE)
[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/)
[![Documentation Status](https://img.shields.io/badge/docs-available-green.svg)](docs/)
[![Build Status](https://img.shields.io/badge/build-passing-brightgreen.svg)](https://github.com/krishnabajpai/evosphere)

> **"The first quantum-enhanced evolutionary bio-compiler for programming life itself."**

**Authors:** Krishna Bajpai and Vedanshi Gupta  
**Status:** Patent Pending (2024)  
**Version:** 1.0.0  

## 🌍 Revolutionary Overview

EvoSphere represents a paradigm shift in computational biology - the first system to integrate **quantum computing**, **evolutionary algorithms**, and **biological design** into a unified, programmable platform. Through six breakthrough patent innovations, EvoSphere doesn't just analyze biological systemsβ€”it **designs, optimizes, and evolves them in real-time**.

## ⚑ Six Patent Innovations

### 1. πŸ”¬ HQESE - Hybrid Quantum-Evolutionary State-Space Engine
**Revolutionary quantum-classical evolution integration**
- Genomes represented as quantum basis states in Hilbert space
- Evolution modeled as unitary transformations with quantum superposition
- Quantum annealing for parallel exploration of adaptive landscapes
- **Patent Claim:** First quantum-enhanced evolutionary optimization system

### 2. πŸ•ΈοΈ MRAEG - Multi-Resolution Adaptive Evolutionary Graphs  
**Dynamic graph neural networks for biological modeling**
- Self-modifying graph topologies that evolve with biological systems
- Multi-resolution representations from molecular to ecosystem scales
- Graph attention mechanisms for biological relationship learning
- **Patent Claim:** First adaptive graph networks for evolutionary biology

### 3. πŸ”§ EvoByte - Evolutionary Bio-Compilation System
**Domain-specific biological programming language and compiler**
- Natural language bio-code compilation to Python, C++, Rust
- Evolutionary optimization integrated into compilation process
- Multi-platform deployment (CPU, GPU, quantum hardware)
- **Patent Claim:** First biological programming language with evolutionary optimization

### 4. 🧭 SEPD - Smart Evolutionary Pathway Designer
**Intelligent biological pathway design with machine learning**  
- Inverse reinforcement learning for pathway optimization
- Multi-objective constraint satisfaction with real-time adaptation
- Automated metabolic, signaling, and regulatory pathway generation
- **Patent Claim:** First ML-driven evolutionary pathway design system

### 5. πŸ“‘ EDAL - Evolutionary Data Assimilation Layer
**Real-time biological data processing and integration**
- Multi-modal biological data fusion (genomic, transcriptomic, proteomic)
- Real-time streaming data processing with Bayesian uncertainty quantification
- Adaptive model updating with new experimental observations
- **Patent Claim:** First real-time evolutionary data assimilation system

### 6. πŸ”— CECE - Cross-Scale Evolutionary Coupling Engine  
**Multi-scale biological system integration and emergence detection**
- Coupling mechanisms across 8 biological scales (molecular to biosphere)
- Emergent behavior detection with phase transition analysis
- Multi-scale feedback control with stability guarantees
- **Patent Claim:** First cross-scale evolutionary coupling system with emergence detection

### 2. Multi-Resolution Adaptive Evolutionary Graph (MRAEG)
- Dynamic hierarchical graph neural networks
- Multi-scale evolution modeling (molecular β†’ organismal β†’ ecosystem)
- Real-time adaptation to genomic data streams

### 3. Evolutionary Bytecode & Compiler Interface (EvoByte)
- Domain-specific evolutionary programming language
- Modular composition of selective pressures
- Translates constraints into predictive trajectories

### 4. Synthetic Evolutionary Pathway Designer (SEPD)
- Inverse reinforcement learning for evolutionary control
- Design desired evolutionary outcomes
- Probabilistic robustness metrics

### 5. Evolutionary Data Assimilation Layer (EDAL)
- Real-time fusion of genomic data streams
- Ensemble Kalman filters for state updates
- Living digital twins of biological systems

### 6. Cross-Scale Evolutionary Coupling Engine (CECE)
- Unified molecular-organismal-ecosystem modeling
- Hierarchical control matrices
- Multi-scale adaptive signal propagation

## πŸš€ Applications

- **Medicine**: Predict drug resistance, design evolution-aware therapies
- **Pandemic Defense**: Forecast viral mutations, preemptive vaccine design
- **Synthetic Biology**: Future-proof bioengineering, controlled evolution
- **Ecology & Agriculture**: Predict adaptation, design resilient crops

## πŸ› οΈ Installation

### Prerequisites
- Python 3.9+
- Git
- Optional: Quantum computing access (IBM Quantum, AWS Braket)

### Quick Install
```bash
pip install evosphere
```

### Development Install
```bash
git clone https://github.com/krishnabajpai/evosphere.git
cd evosphere
pip install -e ".[dev,quantum,ml,bio]"
```

## 🎯 Quick Start

```python
from evosphere import EvoCompiler, QuantumEngine, EvolutionaryGraph

# Initialize the evolutionary compiler
compiler = EvoCompiler()

# Define a genome and environmental pressures
genome = compiler.load_genome("path/to/genome.fasta")
pressures = {
    "antibiotic_concentration": 10.0,
    "temperature": 37.0,
    "ph": 7.4
}

# Compile evolutionary trajectory
trajectory = compiler.compile(
    initial_genome=genome,
    environment=pressures,
    time_horizon=100  # generations
)

# Predict future states
future_genomes = trajectory.predict(steps=50)
resistance_probability = trajectory.calculate_resistance_risk()

print(f"Predicted resistance probability: {resistance_probability:.2%}")
```

## πŸ“– Documentation

Full documentation is available at [evosphere.readthedocs.io](https://evosphere.readthedocs.io/)

- [Getting Started Guide](docs/getting-started.md)
- [API Reference](docs/api-reference.md)
- [Tutorial Notebooks](examples/)
- [Patent Documentation](docs/patents/)

## πŸ§ͺ Examples

Check out our [examples directory](examples/) for:
- Viral evolution prediction
- Cancer resistance modeling
- Synthetic biology design
- Ecosystem dynamics simulation

## 🀝 Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.

### Development Setup
```bash
# Clone and install
git clone https://github.com/krishnabajpai/evosphere.git
cd evosphere
pip install -e ".[dev]"

# Run tests
pytest

# Format code
black src/ tests/
```

## πŸ“„ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## πŸ‘₯ Authors

- **Krishna Bajpai** - *Lead Architect* - krishna.bajpai@evosphere.bio
- **Vedanshi Gupta** - *Lead Developer* - vedanshi.gupta@evosphere.bio

## πŸ“š Citation

If you use EvoSphere in your research, please cite:

```bibtex
@software{bajpai2025evosphere,
  title={EvoSphere: A Quantum-Enhanced Evolutionary Bio-Compiler},
  author={Bajpai, Krishna and Gupta, Vedanshi},
  year={2025},
  url={https://github.com/krishnabajpai/evosphere}
}
```

## 🌟 Acknowledgments

- Quantum computing support provided by IBM Quantum Network
- Genomic datasets from NCBI, EBI, and collaborative research institutions
- Inspiration from the intersection of quantum computing and evolutionary biology

---

*"The future of bioinformatics is not in analyzing what was, but in programming what will be."*

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "evosphere",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "bioinformatics, evolution, quantum-computing, genomics, machine-learning",
    "author": null,
    "author_email": "Krishna Bajpai <krishna@krishnabajpai.me>, Vedanshi Gupta <vedanshigupta158@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/ae/ff/6e7e1aaeb0a1aa1426297cb7596f15e19cab3f4df534059c6755d5962cd3/evosphere-1.0.0.tar.gz",
    "platform": null,
    "description": "# EvoSphere - The Evolutionary Bio-Compiler\r\n\r\n[![License: Patent Pending](https://img.shields.io/badge/License-Patent%20Pending-red.svg)](LICENSE)\r\n[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/)\r\n[![Documentation Status](https://img.shields.io/badge/docs-available-green.svg)](docs/)\r\n[![Build Status](https://img.shields.io/badge/build-passing-brightgreen.svg)](https://github.com/krishnabajpai/evosphere)\r\n\r\n> **\"The first quantum-enhanced evolutionary bio-compiler for programming life itself.\"**\r\n\r\n**Authors:** Krishna Bajpai and Vedanshi Gupta  \r\n**Status:** Patent Pending (2024)  \r\n**Version:** 1.0.0  \r\n\r\n## \ud83c\udf0d Revolutionary Overview\r\n\r\nEvoSphere represents a paradigm shift in computational biology - the first system to integrate **quantum computing**, **evolutionary algorithms**, and **biological design** into a unified, programmable platform. Through six breakthrough patent innovations, EvoSphere doesn't just analyze biological systems\u2014it **designs, optimizes, and evolves them in real-time**.\r\n\r\n## \u26a1 Six Patent Innovations\r\n\r\n### 1. \ud83d\udd2c HQESE - Hybrid Quantum-Evolutionary State-Space Engine\r\n**Revolutionary quantum-classical evolution integration**\r\n- Genomes represented as quantum basis states in Hilbert space\r\n- Evolution modeled as unitary transformations with quantum superposition\r\n- Quantum annealing for parallel exploration of adaptive landscapes\r\n- **Patent Claim:** First quantum-enhanced evolutionary optimization system\r\n\r\n### 2. \ud83d\udd78\ufe0f MRAEG - Multi-Resolution Adaptive Evolutionary Graphs  \r\n**Dynamic graph neural networks for biological modeling**\r\n- Self-modifying graph topologies that evolve with biological systems\r\n- Multi-resolution representations from molecular to ecosystem scales\r\n- Graph attention mechanisms for biological relationship learning\r\n- **Patent Claim:** First adaptive graph networks for evolutionary biology\r\n\r\n### 3. \ud83d\udd27 EvoByte - Evolutionary Bio-Compilation System\r\n**Domain-specific biological programming language and compiler**\r\n- Natural language bio-code compilation to Python, C++, Rust\r\n- Evolutionary optimization integrated into compilation process\r\n- Multi-platform deployment (CPU, GPU, quantum hardware)\r\n- **Patent Claim:** First biological programming language with evolutionary optimization\r\n\r\n### 4. \ud83e\udded SEPD - Smart Evolutionary Pathway Designer\r\n**Intelligent biological pathway design with machine learning**  \r\n- Inverse reinforcement learning for pathway optimization\r\n- Multi-objective constraint satisfaction with real-time adaptation\r\n- Automated metabolic, signaling, and regulatory pathway generation\r\n- **Patent Claim:** First ML-driven evolutionary pathway design system\r\n\r\n### 5. \ud83d\udce1 EDAL - Evolutionary Data Assimilation Layer\r\n**Real-time biological data processing and integration**\r\n- Multi-modal biological data fusion (genomic, transcriptomic, proteomic)\r\n- Real-time streaming data processing with Bayesian uncertainty quantification\r\n- Adaptive model updating with new experimental observations\r\n- **Patent Claim:** First real-time evolutionary data assimilation system\r\n\r\n### 6. \ud83d\udd17 CECE - Cross-Scale Evolutionary Coupling Engine  \r\n**Multi-scale biological system integration and emergence detection**\r\n- Coupling mechanisms across 8 biological scales (molecular to biosphere)\r\n- Emergent behavior detection with phase transition analysis\r\n- Multi-scale feedback control with stability guarantees\r\n- **Patent Claim:** First cross-scale evolutionary coupling system with emergence detection\r\n\r\n### 2. Multi-Resolution Adaptive Evolutionary Graph (MRAEG)\r\n- Dynamic hierarchical graph neural networks\r\n- Multi-scale evolution modeling (molecular \u2192 organismal \u2192 ecosystem)\r\n- Real-time adaptation to genomic data streams\r\n\r\n### 3. Evolutionary Bytecode & Compiler Interface (EvoByte)\r\n- Domain-specific evolutionary programming language\r\n- Modular composition of selective pressures\r\n- Translates constraints into predictive trajectories\r\n\r\n### 4. Synthetic Evolutionary Pathway Designer (SEPD)\r\n- Inverse reinforcement learning for evolutionary control\r\n- Design desired evolutionary outcomes\r\n- Probabilistic robustness metrics\r\n\r\n### 5. Evolutionary Data Assimilation Layer (EDAL)\r\n- Real-time fusion of genomic data streams\r\n- Ensemble Kalman filters for state updates\r\n- Living digital twins of biological systems\r\n\r\n### 6. Cross-Scale Evolutionary Coupling Engine (CECE)\r\n- Unified molecular-organismal-ecosystem modeling\r\n- Hierarchical control matrices\r\n- Multi-scale adaptive signal propagation\r\n\r\n## \ud83d\ude80 Applications\r\n\r\n- **Medicine**: Predict drug resistance, design evolution-aware therapies\r\n- **Pandemic Defense**: Forecast viral mutations, preemptive vaccine design\r\n- **Synthetic Biology**: Future-proof bioengineering, controlled evolution\r\n- **Ecology & Agriculture**: Predict adaptation, design resilient crops\r\n\r\n## \ud83d\udee0\ufe0f Installation\r\n\r\n### Prerequisites\r\n- Python 3.9+\r\n- Git\r\n- Optional: Quantum computing access (IBM Quantum, AWS Braket)\r\n\r\n### Quick Install\r\n```bash\r\npip install evosphere\r\n```\r\n\r\n### Development Install\r\n```bash\r\ngit clone https://github.com/krishnabajpai/evosphere.git\r\ncd evosphere\r\npip install -e \".[dev,quantum,ml,bio]\"\r\n```\r\n\r\n## \ud83c\udfaf Quick Start\r\n\r\n```python\r\nfrom evosphere import EvoCompiler, QuantumEngine, EvolutionaryGraph\r\n\r\n# Initialize the evolutionary compiler\r\ncompiler = EvoCompiler()\r\n\r\n# Define a genome and environmental pressures\r\ngenome = compiler.load_genome(\"path/to/genome.fasta\")\r\npressures = {\r\n    \"antibiotic_concentration\": 10.0,\r\n    \"temperature\": 37.0,\r\n    \"ph\": 7.4\r\n}\r\n\r\n# Compile evolutionary trajectory\r\ntrajectory = compiler.compile(\r\n    initial_genome=genome,\r\n    environment=pressures,\r\n    time_horizon=100  # generations\r\n)\r\n\r\n# Predict future states\r\nfuture_genomes = trajectory.predict(steps=50)\r\nresistance_probability = trajectory.calculate_resistance_risk()\r\n\r\nprint(f\"Predicted resistance probability: {resistance_probability:.2%}\")\r\n```\r\n\r\n## \ud83d\udcd6 Documentation\r\n\r\nFull documentation is available at [evosphere.readthedocs.io](https://evosphere.readthedocs.io/)\r\n\r\n- [Getting Started Guide](docs/getting-started.md)\r\n- [API Reference](docs/api-reference.md)\r\n- [Tutorial Notebooks](examples/)\r\n- [Patent Documentation](docs/patents/)\r\n\r\n## \ud83e\uddea Examples\r\n\r\nCheck out our [examples directory](examples/) for:\r\n- Viral evolution prediction\r\n- Cancer resistance modeling\r\n- Synthetic biology design\r\n- Ecosystem dynamics simulation\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\r\n\r\n### Development Setup\r\n```bash\r\n# Clone and install\r\ngit clone https://github.com/krishnabajpai/evosphere.git\r\ncd evosphere\r\npip install -e \".[dev]\"\r\n\r\n# Run tests\r\npytest\r\n\r\n# Format code\r\nblack src/ tests/\r\n```\r\n\r\n## \ud83d\udcc4 License\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\r\n\r\n## \ud83d\udc65 Authors\r\n\r\n- **Krishna Bajpai** - *Lead Architect* - krishna.bajpai@evosphere.bio\r\n- **Vedanshi Gupta** - *Lead Developer* - vedanshi.gupta@evosphere.bio\r\n\r\n## \ud83d\udcda Citation\r\n\r\nIf you use EvoSphere in your research, please cite:\r\n\r\n```bibtex\r\n@software{bajpai2025evosphere,\r\n  title={EvoSphere: A Quantum-Enhanced Evolutionary Bio-Compiler},\r\n  author={Bajpai, Krishna and Gupta, Vedanshi},\r\n  year={2025},\r\n  url={https://github.com/krishnabajpai/evosphere}\r\n}\r\n```\r\n\r\n## \ud83c\udf1f Acknowledgments\r\n\r\n- Quantum computing support provided by IBM Quantum Network\r\n- Genomic datasets from NCBI, EBI, and collaborative research institutions\r\n- Inspiration from the intersection of quantum computing and evolutionary biology\r\n\r\n---\r\n\r\n*\"The future of bioinformatics is not in analyzing what was, but in programming what will be.\"*\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "The Evolutionary Bio-Compiler: A living engine for programming biology through evolution itself",
    "version": "1.0.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/krishnabajpai/evosphere/issues",
        "Documentation": "https://evosphere.readthedocs.io",
        "Homepage": "https://github.com/krishnabajpai/evosphere",
        "Repository": "https://github.com/krishnabajpai/evosphere.git"
    },
    "split_keywords": [
        "bioinformatics",
        " evolution",
        " quantum-computing",
        " genomics",
        " machine-learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5b12609eef9637fb2013b3304dfcaf2edfcad4b38021a5cee4a6be5a096afed0",
                "md5": "2c1f1b401e0a39947824efca42a61a68",
                "sha256": "801988aa523e975a53a2ef2108b5d7970149cb48a41be9d462f4dda44f0a109d"
            },
            "downloads": -1,
            "filename": "evosphere-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2c1f1b401e0a39947824efca42a61a68",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 204433,
            "upload_time": "2025-08-31T14:13:13",
            "upload_time_iso_8601": "2025-08-31T14:13:13.980263Z",
            "url": "https://files.pythonhosted.org/packages/5b/12/609eef9637fb2013b3304dfcaf2edfcad4b38021a5cee4a6be5a096afed0/evosphere-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "aeff6e7e1aaeb0a1aa1426297cb7596f15e19cab3f4df534059c6755d5962cd3",
                "md5": "6c29a828833cbe578cd37efd52813738",
                "sha256": "c1fc6dc682a5da924f6104e7df0a738e6984ebe7d0a9e272474458d999126f8f"
            },
            "downloads": -1,
            "filename": "evosphere-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "6c29a828833cbe578cd37efd52813738",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 187777,
            "upload_time": "2025-08-31T14:13:16",
            "upload_time_iso_8601": "2025-08-31T14:13:16.212932Z",
            "url": "https://files.pythonhosted.org/packages/ae/ff/6e7e1aaeb0a1aa1426297cb7596f15e19cab3f4df534059c6755d5962cd3/evosphere-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-31 14:13:16",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "krishnabajpai",
    "github_project": "evosphere",
    "github_not_found": true,
    "lcname": "evosphere"
}
        
Elapsed time: 2.09726s