# EvoSphere - The Evolutionary Bio-Compiler
[](LICENSE)
[](https://www.python.org/downloads/)
[](docs/)
[](https://github.com/krishnabajpai/evosphere)
> **"The first quantum-enhanced evolutionary bio-compiler for programming life itself."**
**Authors:** Krishna Bajpai and Vedanshi Gupta
**Status:** Patent Pending (2024)
**Version:** 1.0.0
## π Revolutionary Overview
EvoSphere represents a paradigm shift in computational biology - the first system to integrate **quantum computing**, **evolutionary algorithms**, and **biological design** into a unified, programmable platform. Through six breakthrough patent innovations, EvoSphere doesn't just analyze biological systemsβit **designs, optimizes, and evolves them in real-time**.
## β‘ Six Patent Innovations
### 1. π¬ HQESE - Hybrid Quantum-Evolutionary State-Space Engine
**Revolutionary quantum-classical evolution integration**
- Genomes represented as quantum basis states in Hilbert space
- Evolution modeled as unitary transformations with quantum superposition
- Quantum annealing for parallel exploration of adaptive landscapes
- **Patent Claim:** First quantum-enhanced evolutionary optimization system
### 2. πΈοΈ MRAEG - Multi-Resolution Adaptive Evolutionary Graphs
**Dynamic graph neural networks for biological modeling**
- Self-modifying graph topologies that evolve with biological systems
- Multi-resolution representations from molecular to ecosystem scales
- Graph attention mechanisms for biological relationship learning
- **Patent Claim:** First adaptive graph networks for evolutionary biology
### 3. π§ EvoByte - Evolutionary Bio-Compilation System
**Domain-specific biological programming language and compiler**
- Natural language bio-code compilation to Python, C++, Rust
- Evolutionary optimization integrated into compilation process
- Multi-platform deployment (CPU, GPU, quantum hardware)
- **Patent Claim:** First biological programming language with evolutionary optimization
### 4. π§ SEPD - Smart Evolutionary Pathway Designer
**Intelligent biological pathway design with machine learning**
- Inverse reinforcement learning for pathway optimization
- Multi-objective constraint satisfaction with real-time adaptation
- Automated metabolic, signaling, and regulatory pathway generation
- **Patent Claim:** First ML-driven evolutionary pathway design system
### 5. π‘ EDAL - Evolutionary Data Assimilation Layer
**Real-time biological data processing and integration**
- Multi-modal biological data fusion (genomic, transcriptomic, proteomic)
- Real-time streaming data processing with Bayesian uncertainty quantification
- Adaptive model updating with new experimental observations
- **Patent Claim:** First real-time evolutionary data assimilation system
### 6. π CECE - Cross-Scale Evolutionary Coupling Engine
**Multi-scale biological system integration and emergence detection**
- Coupling mechanisms across 8 biological scales (molecular to biosphere)
- Emergent behavior detection with phase transition analysis
- Multi-scale feedback control with stability guarantees
- **Patent Claim:** First cross-scale evolutionary coupling system with emergence detection
### 2. Multi-Resolution Adaptive Evolutionary Graph (MRAEG)
- Dynamic hierarchical graph neural networks
- Multi-scale evolution modeling (molecular β organismal β ecosystem)
- Real-time adaptation to genomic data streams
### 3. Evolutionary Bytecode & Compiler Interface (EvoByte)
- Domain-specific evolutionary programming language
- Modular composition of selective pressures
- Translates constraints into predictive trajectories
### 4. Synthetic Evolutionary Pathway Designer (SEPD)
- Inverse reinforcement learning for evolutionary control
- Design desired evolutionary outcomes
- Probabilistic robustness metrics
### 5. Evolutionary Data Assimilation Layer (EDAL)
- Real-time fusion of genomic data streams
- Ensemble Kalman filters for state updates
- Living digital twins of biological systems
### 6. Cross-Scale Evolutionary Coupling Engine (CECE)
- Unified molecular-organismal-ecosystem modeling
- Hierarchical control matrices
- Multi-scale adaptive signal propagation
## π Applications
- **Medicine**: Predict drug resistance, design evolution-aware therapies
- **Pandemic Defense**: Forecast viral mutations, preemptive vaccine design
- **Synthetic Biology**: Future-proof bioengineering, controlled evolution
- **Ecology & Agriculture**: Predict adaptation, design resilient crops
## π οΈ Installation
### Prerequisites
- Python 3.9+
- Git
- Optional: Quantum computing access (IBM Quantum, AWS Braket)
### Quick Install
```bash
pip install evosphere
```
### Development Install
```bash
git clone https://github.com/krishnabajpai/evosphere.git
cd evosphere
pip install -e ".[dev,quantum,ml,bio]"
```
## π― Quick Start
```python
from evosphere import EvoCompiler, QuantumEngine, EvolutionaryGraph
# Initialize the evolutionary compiler
compiler = EvoCompiler()
# Define a genome and environmental pressures
genome = compiler.load_genome("path/to/genome.fasta")
pressures = {
"antibiotic_concentration": 10.0,
"temperature": 37.0,
"ph": 7.4
}
# Compile evolutionary trajectory
trajectory = compiler.compile(
initial_genome=genome,
environment=pressures,
time_horizon=100 # generations
)
# Predict future states
future_genomes = trajectory.predict(steps=50)
resistance_probability = trajectory.calculate_resistance_risk()
print(f"Predicted resistance probability: {resistance_probability:.2%}")
```
## π Documentation
Full documentation is available at [evosphere.readthedocs.io](https://evosphere.readthedocs.io/)
- [Getting Started Guide](docs/getting-started.md)
- [API Reference](docs/api-reference.md)
- [Tutorial Notebooks](examples/)
- [Patent Documentation](docs/patents/)
## π§ͺ Examples
Check out our [examples directory](examples/) for:
- Viral evolution prediction
- Cancer resistance modeling
- Synthetic biology design
- Ecosystem dynamics simulation
## π€ Contributing
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
### Development Setup
```bash
# Clone and install
git clone https://github.com/krishnabajpai/evosphere.git
cd evosphere
pip install -e ".[dev]"
# Run tests
pytest
# Format code
black src/ tests/
```
## π License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## π₯ Authors
- **Krishna Bajpai** - *Lead Architect* - krishna.bajpai@evosphere.bio
- **Vedanshi Gupta** - *Lead Developer* - vedanshi.gupta@evosphere.bio
## π Citation
If you use EvoSphere in your research, please cite:
```bibtex
@software{bajpai2025evosphere,
title={EvoSphere: A Quantum-Enhanced Evolutionary Bio-Compiler},
author={Bajpai, Krishna and Gupta, Vedanshi},
year={2025},
url={https://github.com/krishnabajpai/evosphere}
}
```
## π Acknowledgments
- Quantum computing support provided by IBM Quantum Network
- Genomic datasets from NCBI, EBI, and collaborative research institutions
- Inspiration from the intersection of quantum computing and evolutionary biology
---
*"The future of bioinformatics is not in analyzing what was, but in programming what will be."*
Raw data
{
"_id": null,
"home_page": null,
"name": "evosphere",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "bioinformatics, evolution, quantum-computing, genomics, machine-learning",
"author": null,
"author_email": "Krishna Bajpai <krishna@krishnabajpai.me>, Vedanshi Gupta <vedanshigupta158@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/ae/ff/6e7e1aaeb0a1aa1426297cb7596f15e19cab3f4df534059c6755d5962cd3/evosphere-1.0.0.tar.gz",
"platform": null,
"description": "# EvoSphere - The Evolutionary Bio-Compiler\r\n\r\n[](LICENSE)\r\n[](https://www.python.org/downloads/)\r\n[](docs/)\r\n[](https://github.com/krishnabajpai/evosphere)\r\n\r\n> **\"The first quantum-enhanced evolutionary bio-compiler for programming life itself.\"**\r\n\r\n**Authors:** Krishna Bajpai and Vedanshi Gupta \r\n**Status:** Patent Pending (2024) \r\n**Version:** 1.0.0 \r\n\r\n## \ud83c\udf0d Revolutionary Overview\r\n\r\nEvoSphere represents a paradigm shift in computational biology - the first system to integrate **quantum computing**, **evolutionary algorithms**, and **biological design** into a unified, programmable platform. Through six breakthrough patent innovations, EvoSphere doesn't just analyze biological systems\u2014it **designs, optimizes, and evolves them in real-time**.\r\n\r\n## \u26a1 Six Patent Innovations\r\n\r\n### 1. \ud83d\udd2c HQESE - Hybrid Quantum-Evolutionary State-Space Engine\r\n**Revolutionary quantum-classical evolution integration**\r\n- Genomes represented as quantum basis states in Hilbert space\r\n- Evolution modeled as unitary transformations with quantum superposition\r\n- Quantum annealing for parallel exploration of adaptive landscapes\r\n- **Patent Claim:** First quantum-enhanced evolutionary optimization system\r\n\r\n### 2. \ud83d\udd78\ufe0f MRAEG - Multi-Resolution Adaptive Evolutionary Graphs \r\n**Dynamic graph neural networks for biological modeling**\r\n- Self-modifying graph topologies that evolve with biological systems\r\n- Multi-resolution representations from molecular to ecosystem scales\r\n- Graph attention mechanisms for biological relationship learning\r\n- **Patent Claim:** First adaptive graph networks for evolutionary biology\r\n\r\n### 3. \ud83d\udd27 EvoByte - Evolutionary Bio-Compilation System\r\n**Domain-specific biological programming language and compiler**\r\n- Natural language bio-code compilation to Python, C++, Rust\r\n- Evolutionary optimization integrated into compilation process\r\n- Multi-platform deployment (CPU, GPU, quantum hardware)\r\n- **Patent Claim:** First biological programming language with evolutionary optimization\r\n\r\n### 4. \ud83e\udded SEPD - Smart Evolutionary Pathway Designer\r\n**Intelligent biological pathway design with machine learning** \r\n- Inverse reinforcement learning for pathway optimization\r\n- Multi-objective constraint satisfaction with real-time adaptation\r\n- Automated metabolic, signaling, and regulatory pathway generation\r\n- **Patent Claim:** First ML-driven evolutionary pathway design system\r\n\r\n### 5. \ud83d\udce1 EDAL - Evolutionary Data Assimilation Layer\r\n**Real-time biological data processing and integration**\r\n- Multi-modal biological data fusion (genomic, transcriptomic, proteomic)\r\n- Real-time streaming data processing with Bayesian uncertainty quantification\r\n- Adaptive model updating with new experimental observations\r\n- **Patent Claim:** First real-time evolutionary data assimilation system\r\n\r\n### 6. \ud83d\udd17 CECE - Cross-Scale Evolutionary Coupling Engine \r\n**Multi-scale biological system integration and emergence detection**\r\n- Coupling mechanisms across 8 biological scales (molecular to biosphere)\r\n- Emergent behavior detection with phase transition analysis\r\n- Multi-scale feedback control with stability guarantees\r\n- **Patent Claim:** First cross-scale evolutionary coupling system with emergence detection\r\n\r\n### 2. Multi-Resolution Adaptive Evolutionary Graph (MRAEG)\r\n- Dynamic hierarchical graph neural networks\r\n- Multi-scale evolution modeling (molecular \u2192 organismal \u2192 ecosystem)\r\n- Real-time adaptation to genomic data streams\r\n\r\n### 3. Evolutionary Bytecode & Compiler Interface (EvoByte)\r\n- Domain-specific evolutionary programming language\r\n- Modular composition of selective pressures\r\n- Translates constraints into predictive trajectories\r\n\r\n### 4. Synthetic Evolutionary Pathway Designer (SEPD)\r\n- Inverse reinforcement learning for evolutionary control\r\n- Design desired evolutionary outcomes\r\n- Probabilistic robustness metrics\r\n\r\n### 5. Evolutionary Data Assimilation Layer (EDAL)\r\n- Real-time fusion of genomic data streams\r\n- Ensemble Kalman filters for state updates\r\n- Living digital twins of biological systems\r\n\r\n### 6. Cross-Scale Evolutionary Coupling Engine (CECE)\r\n- Unified molecular-organismal-ecosystem modeling\r\n- Hierarchical control matrices\r\n- Multi-scale adaptive signal propagation\r\n\r\n## \ud83d\ude80 Applications\r\n\r\n- **Medicine**: Predict drug resistance, design evolution-aware therapies\r\n- **Pandemic Defense**: Forecast viral mutations, preemptive vaccine design\r\n- **Synthetic Biology**: Future-proof bioengineering, controlled evolution\r\n- **Ecology & Agriculture**: Predict adaptation, design resilient crops\r\n\r\n## \ud83d\udee0\ufe0f Installation\r\n\r\n### Prerequisites\r\n- Python 3.9+\r\n- Git\r\n- Optional: Quantum computing access (IBM Quantum, AWS Braket)\r\n\r\n### Quick Install\r\n```bash\r\npip install evosphere\r\n```\r\n\r\n### Development Install\r\n```bash\r\ngit clone https://github.com/krishnabajpai/evosphere.git\r\ncd evosphere\r\npip install -e \".[dev,quantum,ml,bio]\"\r\n```\r\n\r\n## \ud83c\udfaf Quick Start\r\n\r\n```python\r\nfrom evosphere import EvoCompiler, QuantumEngine, EvolutionaryGraph\r\n\r\n# Initialize the evolutionary compiler\r\ncompiler = EvoCompiler()\r\n\r\n# Define a genome and environmental pressures\r\ngenome = compiler.load_genome(\"path/to/genome.fasta\")\r\npressures = {\r\n \"antibiotic_concentration\": 10.0,\r\n \"temperature\": 37.0,\r\n \"ph\": 7.4\r\n}\r\n\r\n# Compile evolutionary trajectory\r\ntrajectory = compiler.compile(\r\n initial_genome=genome,\r\n environment=pressures,\r\n time_horizon=100 # generations\r\n)\r\n\r\n# Predict future states\r\nfuture_genomes = trajectory.predict(steps=50)\r\nresistance_probability = trajectory.calculate_resistance_risk()\r\n\r\nprint(f\"Predicted resistance probability: {resistance_probability:.2%}\")\r\n```\r\n\r\n## \ud83d\udcd6 Documentation\r\n\r\nFull documentation is available at [evosphere.readthedocs.io](https://evosphere.readthedocs.io/)\r\n\r\n- [Getting Started Guide](docs/getting-started.md)\r\n- [API Reference](docs/api-reference.md)\r\n- [Tutorial Notebooks](examples/)\r\n- [Patent Documentation](docs/patents/)\r\n\r\n## \ud83e\uddea Examples\r\n\r\nCheck out our [examples directory](examples/) for:\r\n- Viral evolution prediction\r\n- Cancer resistance modeling\r\n- Synthetic biology design\r\n- Ecosystem dynamics simulation\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.\r\n\r\n### Development Setup\r\n```bash\r\n# Clone and install\r\ngit clone https://github.com/krishnabajpai/evosphere.git\r\ncd evosphere\r\npip install -e \".[dev]\"\r\n\r\n# Run tests\r\npytest\r\n\r\n# Format code\r\nblack src/ tests/\r\n```\r\n\r\n## \ud83d\udcc4 License\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\r\n\r\n## \ud83d\udc65 Authors\r\n\r\n- **Krishna Bajpai** - *Lead Architect* - krishna.bajpai@evosphere.bio\r\n- **Vedanshi Gupta** - *Lead Developer* - vedanshi.gupta@evosphere.bio\r\n\r\n## \ud83d\udcda Citation\r\n\r\nIf you use EvoSphere in your research, please cite:\r\n\r\n```bibtex\r\n@software{bajpai2025evosphere,\r\n title={EvoSphere: A Quantum-Enhanced Evolutionary Bio-Compiler},\r\n author={Bajpai, Krishna and Gupta, Vedanshi},\r\n year={2025},\r\n url={https://github.com/krishnabajpai/evosphere}\r\n}\r\n```\r\n\r\n## \ud83c\udf1f Acknowledgments\r\n\r\n- Quantum computing support provided by IBM Quantum Network\r\n- Genomic datasets from NCBI, EBI, and collaborative research institutions\r\n- Inspiration from the intersection of quantum computing and evolutionary biology\r\n\r\n---\r\n\r\n*\"The future of bioinformatics is not in analyzing what was, but in programming what will be.\"*\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "The Evolutionary Bio-Compiler: A living engine for programming biology through evolution itself",
"version": "1.0.0",
"project_urls": {
"Bug Tracker": "https://github.com/krishnabajpai/evosphere/issues",
"Documentation": "https://evosphere.readthedocs.io",
"Homepage": "https://github.com/krishnabajpai/evosphere",
"Repository": "https://github.com/krishnabajpai/evosphere.git"
},
"split_keywords": [
"bioinformatics",
" evolution",
" quantum-computing",
" genomics",
" machine-learning"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "5b12609eef9637fb2013b3304dfcaf2edfcad4b38021a5cee4a6be5a096afed0",
"md5": "2c1f1b401e0a39947824efca42a61a68",
"sha256": "801988aa523e975a53a2ef2108b5d7970149cb48a41be9d462f4dda44f0a109d"
},
"downloads": -1,
"filename": "evosphere-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2c1f1b401e0a39947824efca42a61a68",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 204433,
"upload_time": "2025-08-31T14:13:13",
"upload_time_iso_8601": "2025-08-31T14:13:13.980263Z",
"url": "https://files.pythonhosted.org/packages/5b/12/609eef9637fb2013b3304dfcaf2edfcad4b38021a5cee4a6be5a096afed0/evosphere-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "aeff6e7e1aaeb0a1aa1426297cb7596f15e19cab3f4df534059c6755d5962cd3",
"md5": "6c29a828833cbe578cd37efd52813738",
"sha256": "c1fc6dc682a5da924f6104e7df0a738e6984ebe7d0a9e272474458d999126f8f"
},
"downloads": -1,
"filename": "evosphere-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "6c29a828833cbe578cd37efd52813738",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 187777,
"upload_time": "2025-08-31T14:13:16",
"upload_time_iso_8601": "2025-08-31T14:13:16.212932Z",
"url": "https://files.pythonhosted.org/packages/ae/ff/6e7e1aaeb0a1aa1426297cb7596f15e19cab3f4df534059c6755d5962cd3/evosphere-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-31 14:13:16",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "krishnabajpai",
"github_project": "evosphere",
"github_not_found": true,
"lcname": "evosphere"
}