eznlp


Nameeznlp JSON
Version 0.2.4 PyPI version JSON
download
home_pagehttps://github.com/syuoni/eznlp
SummaryEasy Natural Language Processing
upload_time2023-05-11 01:53:49
maintainer
docs_urlNone
authorEnwei Zhu
requires_python>=3.8,<4
licenseApache
keywords torch
VCS
bugtrack_url
requirements flair allennlp transformers tokenizers nltk truecase hanziconv spacy en_core_web_sm de_core_news_sm jieba pytorch-crf packaging
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Easy Natural Language Processing

Overparameterized neural networks are lazy (Chizat et al., 2019), so we design structures and objectives that can be easily optimized. 

`eznlp` is a `PyTorch`-based package for neural natural language processing, currently supporting the following tasks:

* Text Classification ([Experimental Results](docs/text-classification.md))
* Named Entity Recognition ([Experimental Results](docs/entity-recognition.md))
* Relation Extraction ([Experimental Results](docs/relation-extraction.md))
* Attribute Extraction
* Machine Translation
* Image Captioning

This repository also maintains the code of our papers: 
* Check this [link](docs/deep-span.md) for "Deep Span Representations for Named Entity Recognition" accepted to Findings of ACL 2023. 
* Check this [link](docs/boundary-smoothing.md) for "Boundary Smoothing for Named Entity Recognition" in ACL 2022. 
* Check this [link](publications/framework/scheme.pdf) for the annotation scheme described in "A Unified Framework of Medical Information Annotation and Extraction for Chinese Clinical Text". 


## Installation
### Create an environment
```bash
$ conda create --name eznlp python=3.8
$ conda activate eznlp
```

### Install dependencies
```bash
$ conda install numpy=1.18.5 pandas=1.0.5 xlrd=1.2.0 matplotlib=3.2.2 
$ conda install pytorch=1.7.1 torchvision=0.8.2 torchtext=0.8.1 {cpuonly|cudatoolkit=10.2|cudatoolkit=11.0} -c pytorch 
$ pip install -r requirements.txt 
```

### Install `eznlp`
* From source (recommended)
```bash
$ python setup.py sdist
$ pip install dist/eznlp-<version>.tar.gz --no-deps
```

* With `pip`
```bash
$ pip install eznlp --no-deps
```


## Running the Code
### Text classification
```bash
$ python scripts/text_classification.py --dataset <dataset> [options]
```

### Entity recognition
```bash
$ python scripts/entity_recognition.py --dataset <dataset> [options]
```

### Relation extraction
```bash
$ python scripts/relation_extraction.py --dataset <dataset> [options]
```

### Attribute extraction
```bash
$ python scripts/attribute_extraction.py --dataset <dataset> [options]
```


## Citation
If you find our code useful, please cite the following papers: 

```
@article{zhu2022deep-span,
  title={Deep Span Representations for Named Entity Recognition},
  author={Zhu, Enwei and Liu, Yiyang and Li, Jinpeng},
  journal={arXiv preprint arXiv:2210.04182},
  year={2022}
}
```

```
@inproceedings{zhu2022boundary,
  title={Boundary Smoothing for Named Entity Recognition},
  author={Zhu, Enwei and Li, Jinpeng},
  booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
  month={may},
  year={2022},
  address={Dublin, Ireland},
  publisher={Association for Computational Linguistics},
  url={https://aclanthology.org/2022.acl-long.490},
  pages={7096--7108}
}
```

```
@article{zhu2021framework,
  title={A Unified Framework of Medical Information Annotation and Extraction for {C}hinese Clinical Text},
  author={Zhu, Enwei and Sheng, Qilin and Yang, Huanwan and Li, Jinpeng},
  journal={arXiv preprint arXiv:2203.03823},
  year={2021}
}
```


## References
* Chizat, L., Oyallon, E., and Bach, F. On lazy training in differentiable programming. In *NeurIPS 2019*.
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/syuoni/eznlp",
    "name": "eznlp",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8,<4",
    "maintainer_email": "",
    "keywords": "torch",
    "author": "Enwei Zhu",
    "author_email": "enwei.zhu@outlook.com",
    "download_url": "https://files.pythonhosted.org/packages/44/a9/91cfb130fb24709d8818989a80522e533b8f0e6a9dd03edd51315121f2c5/eznlp-0.2.4.tar.gz",
    "platform": null,
    "description": "# Easy Natural Language Processing\n\nOverparameterized neural networks are lazy (Chizat et al., 2019), so we design structures and objectives that can be easily optimized. \n\n`eznlp` is a `PyTorch`-based package for neural natural language processing, currently supporting the following tasks:\n\n* Text Classification ([Experimental Results](docs/text-classification.md))\n* Named Entity Recognition ([Experimental Results](docs/entity-recognition.md))\n* Relation Extraction ([Experimental Results](docs/relation-extraction.md))\n* Attribute Extraction\n* Machine Translation\n* Image Captioning\n\nThis repository also maintains the code of our papers: \n* Check this [link](docs/deep-span.md) for \"Deep Span Representations for Named Entity Recognition\" accepted to Findings of ACL 2023. \n* Check this [link](docs/boundary-smoothing.md) for \"Boundary Smoothing for Named Entity Recognition\" in ACL 2022. \n* Check this [link](publications/framework/scheme.pdf) for the annotation scheme described in \"A Unified Framework of Medical Information Annotation and Extraction for Chinese Clinical Text\". \n\n\n## Installation\n### Create an environment\n```bash\n$ conda create --name eznlp python=3.8\n$ conda activate eznlp\n```\n\n### Install dependencies\n```bash\n$ conda install numpy=1.18.5 pandas=1.0.5 xlrd=1.2.0 matplotlib=3.2.2 \n$ conda install pytorch=1.7.1 torchvision=0.8.2 torchtext=0.8.1 {cpuonly|cudatoolkit=10.2|cudatoolkit=11.0} -c pytorch \n$ pip install -r requirements.txt \n```\n\n### Install `eznlp`\n* From source (recommended)\n```bash\n$ python setup.py sdist\n$ pip install dist/eznlp-<version>.tar.gz --no-deps\n```\n\n* With `pip`\n```bash\n$ pip install eznlp --no-deps\n```\n\n\n## Running the Code\n### Text classification\n```bash\n$ python scripts/text_classification.py --dataset <dataset> [options]\n```\n\n### Entity recognition\n```bash\n$ python scripts/entity_recognition.py --dataset <dataset> [options]\n```\n\n### Relation extraction\n```bash\n$ python scripts/relation_extraction.py --dataset <dataset> [options]\n```\n\n### Attribute extraction\n```bash\n$ python scripts/attribute_extraction.py --dataset <dataset> [options]\n```\n\n\n## Citation\nIf you find our code useful, please cite the following papers: \n\n```\n@article{zhu2022deep-span,\n  title={Deep Span Representations for Named Entity Recognition},\n  author={Zhu, Enwei and Liu, Yiyang and Li, Jinpeng},\n  journal={arXiv preprint arXiv:2210.04182},\n  year={2022}\n}\n```\n\n```\n@inproceedings{zhu2022boundary,\n  title={Boundary Smoothing for Named Entity Recognition},\n  author={Zhu, Enwei and Li, Jinpeng},\n  booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},\n  month={may},\n  year={2022},\n  address={Dublin, Ireland},\n  publisher={Association for Computational Linguistics},\n  url={https://aclanthology.org/2022.acl-long.490},\n  pages={7096--7108}\n}\n```\n\n```\n@article{zhu2021framework,\n  title={A Unified Framework of Medical Information Annotation and Extraction for {C}hinese Clinical Text},\n  author={Zhu, Enwei and Sheng, Qilin and Yang, Huanwan and Li, Jinpeng},\n  journal={arXiv preprint arXiv:2203.03823},\n  year={2021}\n}\n```\n\n\n## References\n* Chizat, L., Oyallon, E., and Bach, F. On lazy training in differentiable programming. In *NeurIPS 2019*.",
    "bugtrack_url": null,
    "license": "Apache",
    "summary": "Easy Natural Language Processing",
    "version": "0.2.4",
    "project_urls": {
        "Homepage": "https://github.com/syuoni/eznlp"
    },
    "split_keywords": [
        "torch"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "44a991cfb130fb24709d8818989a80522e533b8f0e6a9dd03edd51315121f2c5",
                "md5": "fb5780fce5eb622c77eb474974d38a49",
                "sha256": "e8e5fbeae70115b4ed951b6b42946ec18dcaa6f9372bb5b50e922fb9f095f3b3"
            },
            "downloads": -1,
            "filename": "eznlp-0.2.4.tar.gz",
            "has_sig": false,
            "md5_digest": "fb5780fce5eb622c77eb474974d38a49",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<4",
            "size": 121865,
            "upload_time": "2023-05-11T01:53:49",
            "upload_time_iso_8601": "2023-05-11T01:53:49.301669Z",
            "url": "https://files.pythonhosted.org/packages/44/a9/91cfb130fb24709d8818989a80522e533b8f0e6a9dd03edd51315121f2c5/eznlp-0.2.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-11 01:53:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "syuoni",
    "github_project": "eznlp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "flair",
            "specs": [
                [
                    "==",
                    "0.8"
                ]
            ]
        },
        {
            "name": "allennlp",
            "specs": [
                [
                    "==",
                    "2.1.0"
                ]
            ]
        },
        {
            "name": "transformers",
            "specs": [
                [
                    "==",
                    "4.3.2"
                ]
            ]
        },
        {
            "name": "tokenizers",
            "specs": [
                [
                    "==",
                    "0.10.1"
                ]
            ]
        },
        {
            "name": "nltk",
            "specs": [
                [
                    "==",
                    "3.5"
                ]
            ]
        },
        {
            "name": "truecase",
            "specs": [
                [
                    "==",
                    "0.0.12"
                ]
            ]
        },
        {
            "name": "hanziconv",
            "specs": [
                [
                    "==",
                    "0.3.2"
                ]
            ]
        },
        {
            "name": "spacy",
            "specs": [
                [
                    "==",
                    "2.3.2"
                ]
            ]
        },
        {
            "name": "en_core_web_sm",
            "specs": []
        },
        {
            "name": "de_core_news_sm",
            "specs": []
        },
        {
            "name": "jieba",
            "specs": [
                [
                    "==",
                    "0.42.1"
                ]
            ]
        },
        {
            "name": "pytorch-crf",
            "specs": [
                [
                    "==",
                    "0.7.2"
                ]
            ]
        },
        {
            "name": "packaging",
            "specs": [
                [
                    "==",
                    "20.4"
                ]
            ]
        }
    ],
    "lcname": "eznlp"
}
        
Elapsed time: 0.11226s