Name | fakecbed JSON |
Version |
0.1.0
JSON |
| download |
home_page | None |
Summary | A Python library for generating quickly images that imitate convergent beam electron diffraction patterns. |
upload_time | 2024-12-14 05:03:45 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
pytorch
microscopy
diffraction
cbed
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
|
# Fake Convergence Beam Electron Diffraction (fakecbed)
[![Test library](https://github.com/mrfitzpa/fakecbed/actions/workflows/test_library.yml/badge.svg)](https://github.com/mrfitzpa/fakecbed/actions/workflows/test_library.yml)
[![Code Coverage](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/mrfitzpa/adb03c4c54f978f44822ffa033fe6762/raw/fakecbed_coverage_badge.json)](https://github.com/mrfitzpa/fakecbed/actions/workflows/measure_code_coverage.yml)
[![Documentation](https://img.shields.io/badge/docs-read-brightgreen)](https://mrfitzpa.github.io/fakecbed)
[![PyPi Version](https://img.shields.io/pypi/v/fakecbed.svg)](https://pypi.org/project/fakecbed)
[![Conda-Forge Version](https://img.shields.io/conda/vn/conda-forge/fakecbed.svg)](https://anaconda.org/conda-forge/fakecbed)
[![License](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)
`fakecbed` is a Python library for generating quickly images that imitate
convergent beam electron diffraction patterns.
Visit the `fakecbed` [website](https://mrfitzpa.github.io/fakecbed) for a web
version of the installation instructions, the reference guide, and the examples
archive.
<!--
For those reading raw .rst files, see file `docs/INSTALL.rst` for instructions
on installing the `fakecbed` library.
-->
Raw data
{
"_id": null,
"home_page": null,
"name": "fakecbed",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "pytorch, microscopy, diffraction, cbed",
"author": null,
"author_email": "Matthew Fitzpatrick <matthew.rc.fitzpatrick@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/d3/fb/e47c319ccefadf1cc0fd4a201e15d7bea33b1c4fb4bfc541eabf98e7c829/fakecbed-0.1.0.tar.gz",
"platform": null,
"description": "# Fake Convergence Beam Electron Diffraction (fakecbed)\n\n[![Test library](https://github.com/mrfitzpa/fakecbed/actions/workflows/test_library.yml/badge.svg)](https://github.com/mrfitzpa/fakecbed/actions/workflows/test_library.yml)\n[![Code Coverage](https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/mrfitzpa/adb03c4c54f978f44822ffa033fe6762/raw/fakecbed_coverage_badge.json)](https://github.com/mrfitzpa/fakecbed/actions/workflows/measure_code_coverage.yml)\n[![Documentation](https://img.shields.io/badge/docs-read-brightgreen)](https://mrfitzpa.github.io/fakecbed)\n[![PyPi Version](https://img.shields.io/pypi/v/fakecbed.svg)](https://pypi.org/project/fakecbed)\n[![Conda-Forge Version](https://img.shields.io/conda/vn/conda-forge/fakecbed.svg)](https://anaconda.org/conda-forge/fakecbed)\n[![License](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)\n\n`fakecbed` is a Python library for generating quickly images that imitate\nconvergent beam electron diffraction patterns.\n\nVisit the `fakecbed` [website](https://mrfitzpa.github.io/fakecbed) for a web\nversion of the installation instructions, the reference guide, and the examples\narchive.\n\n<!--\nFor those reading raw .rst files, see file `docs/INSTALL.rst` for instructions\non installing the `fakecbed` library.\n-->\n",
"bugtrack_url": null,
"license": null,
"summary": "A Python library for generating quickly images that imitate convergent beam electron diffraction patterns.",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://mrfitzpa.github.io/fakecbed",
"Repository": "https://github.com/mrfitzpa/fakecbed"
},
"split_keywords": [
"pytorch",
" microscopy",
" diffraction",
" cbed"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b732594abbb58b148c5981fc111cb1e7f8f64951145df422c5adbcc87f7b69d5",
"md5": "9305f0e134cecee883d627af9769c152",
"sha256": "7e3f4f75713359fdf0e9e45771ef004adf074c394a30b7f54b742fd547d15d97"
},
"downloads": -1,
"filename": "fakecbed-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9305f0e134cecee883d627af9769c152",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 49290,
"upload_time": "2024-12-14T05:03:42",
"upload_time_iso_8601": "2024-12-14T05:03:42.526083Z",
"url": "https://files.pythonhosted.org/packages/b7/32/594abbb58b148c5981fc111cb1e7f8f64951145df422c5adbcc87f7b69d5/fakecbed-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d3fbe47c319ccefadf1cc0fd4a201e15d7bea33b1c4fb4bfc541eabf98e7c829",
"md5": "30301025772416fb63de64a37ca9510d",
"sha256": "82480192b723ad572abb9811c221b4d4cc118e0cc7ea8502b871f86fd224a9b2"
},
"downloads": -1,
"filename": "fakecbed-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "30301025772416fb63de64a37ca9510d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 69226,
"upload_time": "2024-12-14T05:03:45",
"upload_time_iso_8601": "2024-12-14T05:03:45.108979Z",
"url": "https://files.pythonhosted.org/packages/d3/fb/e47c319ccefadf1cc0fd4a201e15d7bea33b1c4fb4bfc541eabf98e7c829/fakecbed-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-14 05:03:45",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "mrfitzpa",
"github_project": "fakecbed",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"tox": true,
"lcname": "fakecbed"
}