fastanpr


Namefastanpr JSON
Version 0.1.13 PyPI version JSON
download
home_pagehttps://github.com/arvindrajan92/fastanpr
SummaryA fast automatic number-plate recognition (ANPR) library
upload_time2024-03-30 13:47:14
maintainerNone
docs_urlNone
authorarvindrajan92 (Arvind Rajan)
requires_python>=3.6
licenseNone
keywords python anpr fast licence plate number plate detection recognition yolov8 paddleocr paddlepaddle
VCS
bugtrack_url
requirements ultralytics paddlepaddle paddleocr fastapi pydantic uvicorn
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <img src="misc/logo.jpg" alt="FastANPR logo" style="width:100%;">

[![Build Status](https://github.com/arvindrajan92/fastanpr/actions/workflows/merge.yaml/badge.svg)](https://github.com/arvindrajan92/fastanpr/actions)
[![Build Status](https://github.com/arvindrajan92/fastanpr/actions/workflows/merge_macos.yaml/badge.svg)](https://github.com/arvindrajan92/fastanpr/actions)
[![Build Status](https://github.com/arvindrajan92/fastanpr/actions/workflows/merge_raspbian.yaml/badge.svg)](https://github.com/arvindrajan92/fastanpr/actions)
[![Build Status](https://github.com/arvindrajan92/fastanpr/actions/workflows/merge_windows.yaml/badge.svg)](https://github.com/arvindrajan92/fastanpr/actions)
[![Build Status](https://github.com/arvindrajan92/fastanpr/actions/workflows/push.yaml/badge.svg)](https://github.com/arvindrajan92/fastanpr/actions)
[![Build Status](https://github.com/arvindrajan92/fastanpr/actions/workflows/publish.yaml/badge.svg)](https://github.com/arvindrajan92/fastanpr/actions)
[![GitHub release (latest by date)](https://img.shields.io/github/v/release/arvindrajan92/fastanpr)](https://github.com/arvindrajan92/fastanpr/releases)
[![Python Versions](https://img.shields.io/badge/python-3.8%20to%203.11-blue)](https://www.python.org/downloads/)
[![License: AGPL-3.0](https://img.shields.io/badge/License-AGPL--3.0-blue.svg)](https://www.gnu.org/licenses/agpl-3.0)
[![GitHub stars](https://img.shields.io/github/stars/arvindrajan92/fastanpr?style=social)](https://github.com/arvindrajan92/fastanpr)

## Introduction
A fast *automatic number-plate recognition* (ANPR) library. This package employs [YOLOv8](https://github.com/ultralytics/ultralytics), a lightweight model, for detection, and [Paddle OCR](https://github.com/PaddlePaddle/PaddleOCR), a lightweight *optical character recognition* (OCR) library, for recognizing text in detected number plates.
![Example outputs](misc/sample.png)

## Installation
You can install the package using pip:
```bash
pip install fastanpr
```
### Requirements
- Windows:
  - Python >=3.8, <3.11
- Ubuntu, macOS, Raspbian:
  - Python >=3.8, <3.12

## Usage
```python
import cv2
from fastanpr import FastANPR

# Create an instance of FastANPR
fast_anpr = FastANPR()

# Load images (images should be of type numpy ndarray)
files = [...]
images = [cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2RGB) for file in files]

# Run ANPR on the images
number_plates = await fast_anpr.run(images)

# Print out results
for file, plates in zip(files, number_plates):
    print(file)
    for plate in plates:
        print("Plate Attributes:")
        print("Detection bounding box:", plate.det_box)
        print("Detection confidence:", plate.det_conf)
        print("Recognition text:", plate.rec_text)
        print("Recognition polygon:", plate.rec_poly)
        print("Recognition confidence:", plate.rec_conf)
        print()
    print()
```
### Class: FastANPR

#### Methods

##### run(images: List[np.ndarray] -> List[List[NumberPlate]]

Runs ANPR on a list of images and return a list of detected number plates.

- **Parameters:**
  - `images` (List[np.ndarray]): A list of images represented as numpy ndarray.

- **Returns:**
  - `List[List[NumberPlate]]`: A list of detected number plates for every image.

### Class: NumberPlate

#### Attributes

- `det_box` (List[int]): Bounding box coordinates of detected number plate.
- `det_conf` (float): Confidence score of number plate detection.
- `rec_text` (str): Recognized plate number.
- `rec_poly` (List[List[int]]): Polygon coordinates of detected texts.
- `rec_conf` (float): Confidence score of recognition.

## FastAPI
To start a FastAPI server locally from your console:
```bash
uvicorn api:app
```
### Usage
```python
import base64
import requests

# Step 1: Read the image file
image_path = 'tests/images/image001.jpg'
with open(image_path, 'rb') as image_file:
    image_data = image_file.read()

# Step 2: Convert the image to a base64 encoded string
base64_image_str = base64.b64encode(image_data).decode('utf-8')

# Prepare the data for the POST request (assuming the API expects JSON)
data = {'image': base64_image_str}

# Step 3: Send a POST request
response = requests.post(url='http://127.0.0.1:8000/recognise', json=data)

# Check the response
if response.status_code == 200:
    # 'number_plates': [
    #       {
    #           'det_box': [682, 414, 779, 455], 
    #           'det_conf': 0.29964497685432434, 
    #           'rec_poly': [[688, 420], [775, 420], [775, 451], [688, 451]], 
    #           'rec_text': 'BVH826', 
    #           'rec_conf': 0.940690815448761
    #       }
    # ]
    print(response.json())
else:
    print(f"Request failed with status code {response.status_code}.")
```

## Docker
Hosting a FastAPI server can also be done by building a docker file as from console:
```bash
docker build -t fastanpr-app .
docker run -p 8000:8000 fastanpr-app
```

## Licence
This project incorporates the YOLOv8 model from Ultralytics, which is licensed under the AGPL-3.0 license. As such, this project is also distributed under the [GNU Affero General Public License v3.0 (AGPL-3.0)](LICENSE) to comply with the licensing requirements.

For more details on the YOLOv8 model and its license, please visit the [Ultralytics GitHub repository](https://github.com/ultralytics/ultralytics).

## Contributing

We warmly welcome contributions from the community! If you're interested in contributing to this project, please start by reading our [CONTRIBUTING.md](CONTRIBUTING.md) guide.

Whether you're looking to submit a bug report, propose a new feature, or contribute code, we're excited to see what you have to offer. Please don't hesitate to reach out by opening an issue or submitting a pull request.

Thank you for considering contributing to our project. Your support helps us make the software better for everyone.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/arvindrajan92/fastanpr",
    "name": "fastanpr",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "python, anpr, fast, licence plate, number plate, detection, recognition, YOLOv8, paddleocr, paddlepaddle",
    "author": "arvindrajan92 (Arvind Rajan)",
    "author_email": "<arvindrajan92@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/ee/58/5f48c8413b12c9323839fcdc72d5d78774d3e7bf93acf2e61bdd61edb814/fastanpr-0.1.13.tar.gz",
    "platform": null,
    "description": "<img src=\"misc/logo.jpg\" alt=\"FastANPR logo\" style=\"width:100%;\">\n\n[![Build Status](https://github.com/arvindrajan92/fastanpr/actions/workflows/merge.yaml/badge.svg)](https://github.com/arvindrajan92/fastanpr/actions)\n[![Build Status](https://github.com/arvindrajan92/fastanpr/actions/workflows/merge_macos.yaml/badge.svg)](https://github.com/arvindrajan92/fastanpr/actions)\n[![Build Status](https://github.com/arvindrajan92/fastanpr/actions/workflows/merge_raspbian.yaml/badge.svg)](https://github.com/arvindrajan92/fastanpr/actions)\n[![Build Status](https://github.com/arvindrajan92/fastanpr/actions/workflows/merge_windows.yaml/badge.svg)](https://github.com/arvindrajan92/fastanpr/actions)\n[![Build Status](https://github.com/arvindrajan92/fastanpr/actions/workflows/push.yaml/badge.svg)](https://github.com/arvindrajan92/fastanpr/actions)\n[![Build Status](https://github.com/arvindrajan92/fastanpr/actions/workflows/publish.yaml/badge.svg)](https://github.com/arvindrajan92/fastanpr/actions)\n[![GitHub release (latest by date)](https://img.shields.io/github/v/release/arvindrajan92/fastanpr)](https://github.com/arvindrajan92/fastanpr/releases)\n[![Python Versions](https://img.shields.io/badge/python-3.8%20to%203.11-blue)](https://www.python.org/downloads/)\n[![License: AGPL-3.0](https://img.shields.io/badge/License-AGPL--3.0-blue.svg)](https://www.gnu.org/licenses/agpl-3.0)\n[![GitHub stars](https://img.shields.io/github/stars/arvindrajan92/fastanpr?style=social)](https://github.com/arvindrajan92/fastanpr)\n\n## Introduction\nA fast *automatic number-plate recognition* (ANPR) library. This package employs [YOLOv8](https://github.com/ultralytics/ultralytics), a lightweight model, for detection, and [Paddle OCR](https://github.com/PaddlePaddle/PaddleOCR), a lightweight *optical character recognition* (OCR) library, for recognizing text in detected number plates.\n![Example outputs](misc/sample.png)\n\n## Installation\nYou can install the package using pip:\n```bash\npip install fastanpr\n```\n### Requirements\n- Windows:\n  - Python >=3.8, <3.11\n- Ubuntu, macOS, Raspbian:\n  - Python >=3.8, <3.12\n\n## Usage\n```python\nimport cv2\nfrom fastanpr import FastANPR\n\n# Create an instance of FastANPR\nfast_anpr = FastANPR()\n\n# Load images (images should be of type numpy ndarray)\nfiles = [...]\nimages = [cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2RGB) for file in files]\n\n# Run ANPR on the images\nnumber_plates = await fast_anpr.run(images)\n\n# Print out results\nfor file, plates in zip(files, number_plates):\n    print(file)\n    for plate in plates:\n        print(\"Plate Attributes:\")\n        print(\"Detection bounding box:\", plate.det_box)\n        print(\"Detection confidence:\", plate.det_conf)\n        print(\"Recognition text:\", plate.rec_text)\n        print(\"Recognition polygon:\", plate.rec_poly)\n        print(\"Recognition confidence:\", plate.rec_conf)\n        print()\n    print()\n```\n### Class: FastANPR\n\n#### Methods\n\n##### run(images: List[np.ndarray] -> List[List[NumberPlate]]\n\nRuns ANPR on a list of images and return a list of detected number plates.\n\n- **Parameters:**\n  - `images` (List[np.ndarray]): A list of images represented as numpy ndarray.\n\n- **Returns:**\n  - `List[List[NumberPlate]]`: A list of detected number plates for every image.\n\n### Class: NumberPlate\n\n#### Attributes\n\n- `det_box` (List[int]): Bounding box coordinates of detected number plate.\n- `det_conf` (float): Confidence score of number plate detection.\n- `rec_text` (str): Recognized plate number.\n- `rec_poly` (List[List[int]]): Polygon coordinates of detected texts.\n- `rec_conf` (float): Confidence score of recognition.\n\n## FastAPI\nTo start a FastAPI server locally from your console:\n```bash\nuvicorn api:app\n```\n### Usage\n```python\nimport base64\nimport requests\n\n# Step 1: Read the image file\nimage_path = 'tests/images/image001.jpg'\nwith open(image_path, 'rb') as image_file:\n    image_data = image_file.read()\n\n# Step 2: Convert the image to a base64 encoded string\nbase64_image_str = base64.b64encode(image_data).decode('utf-8')\n\n# Prepare the data for the POST request (assuming the API expects JSON)\ndata = {'image': base64_image_str}\n\n# Step 3: Send a POST request\nresponse = requests.post(url='http://127.0.0.1:8000/recognise', json=data)\n\n# Check the response\nif response.status_code == 200:\n    # 'number_plates': [\n    #       {\n    #           'det_box': [682, 414, 779, 455], \n    #           'det_conf': 0.29964497685432434, \n    #           'rec_poly': [[688, 420], [775, 420], [775, 451], [688, 451]], \n    #           'rec_text': 'BVH826', \n    #           'rec_conf': 0.940690815448761\n    #       }\n    # ]\n    print(response.json())\nelse:\n    print(f\"Request failed with status code {response.status_code}.\")\n```\n\n## Docker\nHosting a FastAPI server can also be done by building a docker file as from console:\n```bash\ndocker build -t fastanpr-app .\ndocker run -p 8000:8000 fastanpr-app\n```\n\n## Licence\nThis project incorporates the YOLOv8 model from Ultralytics, which is licensed under the AGPL-3.0 license. As such, this project is also distributed under the [GNU Affero General Public License v3.0 (AGPL-3.0)](LICENSE) to comply with the licensing requirements.\n\nFor more details on the YOLOv8 model and its license, please visit the [Ultralytics GitHub repository](https://github.com/ultralytics/ultralytics).\n\n## Contributing\n\nWe warmly welcome contributions from the community! If you're interested in contributing to this project, please start by reading our [CONTRIBUTING.md](CONTRIBUTING.md) guide.\n\nWhether you're looking to submit a bug report, propose a new feature, or contribute code, we're excited to see what you have to offer. Please don't hesitate to reach out by opening an issue or submitting a pull request.\n\nThank you for considering contributing to our project. Your support helps us make the software better for everyone.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A fast automatic number-plate recognition (ANPR) library",
    "version": "0.1.13",
    "project_urls": {
        "Homepage": "https://github.com/arvindrajan92/fastanpr"
    },
    "split_keywords": [
        "python",
        " anpr",
        " fast",
        " licence plate",
        " number plate",
        " detection",
        " recognition",
        " yolov8",
        " paddleocr",
        " paddlepaddle"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f0f3882a42e21012838a4952a98fb23b5574deedd02973c1b221211252894f1f",
                "md5": "b7a657d1eb4dfe40e1edfaa87d52d48f",
                "sha256": "e50469264d81e65106a359d84736608dc994dfadd43f3065ac9be03c228c722a"
            },
            "downloads": -1,
            "filename": "fastanpr-0.1.13-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b7a657d1eb4dfe40e1edfaa87d52d48f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 5682229,
            "upload_time": "2024-03-30T13:47:11",
            "upload_time_iso_8601": "2024-03-30T13:47:11.861146Z",
            "url": "https://files.pythonhosted.org/packages/f0/f3/882a42e21012838a4952a98fb23b5574deedd02973c1b221211252894f1f/fastanpr-0.1.13-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ee585f48c8413b12c9323839fcdc72d5d78774d3e7bf93acf2e61bdd61edb814",
                "md5": "515738b90058e8d9f49346e334f271c8",
                "sha256": "81f924b3dfba82b2e5e6ae4a4e1a29ea36250bc89c4d96bb640f568750b42031"
            },
            "downloads": -1,
            "filename": "fastanpr-0.1.13.tar.gz",
            "has_sig": false,
            "md5_digest": "515738b90058e8d9f49346e334f271c8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 5684992,
            "upload_time": "2024-03-30T13:47:14",
            "upload_time_iso_8601": "2024-03-30T13:47:14.476945Z",
            "url": "https://files.pythonhosted.org/packages/ee/58/5f48c8413b12c9323839fcdc72d5d78774d3e7bf93acf2e61bdd61edb814/fastanpr-0.1.13.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-30 13:47:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "arvindrajan92",
    "github_project": "fastanpr",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "ultralytics",
            "specs": [
                [
                    ">=",
                    "8.1.34"
                ]
            ]
        },
        {
            "name": "paddlepaddle",
            "specs": [
                [
                    ">=",
                    "2.6.1"
                ]
            ]
        },
        {
            "name": "paddleocr",
            "specs": [
                [
                    "==",
                    "2.7.2"
                ]
            ]
        },
        {
            "name": "fastapi",
            "specs": [
                [
                    ">=",
                    "0.110.0"
                ]
            ]
        },
        {
            "name": "pydantic",
            "specs": [
                [
                    ">=",
                    "2.6.4"
                ]
            ]
        },
        {
            "name": "uvicorn",
            "specs": [
                [
                    ">=",
                    "0.29.0"
                ]
            ]
        }
    ],
    "lcname": "fastanpr"
}
        
Elapsed time: 0.23281s