[![Unit tests](https://github.com/cmgcds/fastvpinns/actions/workflows/unit-tests.yml/badge.svg)](https://github.com/cmgcds/fastvpinns/actions/workflows/unit-tests.yml)
[![Integration tests](https://github.com/cmgcds/fastvpinns/actions/workflows/integration-tests.yml/badge.svg)](https://github.com/cmgcds/fastvpinns/actions/workflows/integration-tests.yml)
[![Compatability check](https://github.com/cmgcds/fastvpinns/actions/workflows/compatibility-tests.yml/badge.svg)](https://github.com/cmgcds/fastvpinns/actions/workflows/compatibility-tests.yml)
[![codecov](https://codecov.io/gh/cmgcds/fastvpinns/graph/badge.svg?token=NI9G37R2Q7)](https://codecov.io/gh/cmgcds/fastvpinns)
[![PyPI](https://badge.fury.io/py/fastvpinns.svg)](https://badge.fury.io/py/fastvpinns)
[![MIT License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
![Python Versions](https://img.shields.io/badge/python-3.8%20|%203.9%20|%203.10%20|%203.11-blue)
[![status](https://joss.theoj.org/papers/173453d08813f66a718f583502351747/status.svg)](https://joss.theoj.org/papers/173453d08813f66a718f583502351747)
<br />
<div align="center">
<a href="https://github.com/cmgcds/fastvpinns">
<img alt="FastVPINNs logo" src="https://raw.githubusercontent.com/cmgcds/fastvpinns/main/Fastvpinns_logo.png" width="500">
</a>
<h3 align="center">Tensor-driven accelerated framework for hp-variational pinns</h3>
<p align="center">
<br />
<a href="https://cmgcds.github.io/fastvpinns"><strong>Link to Documentation 📚</strong></a>
<br />
</p>
</div>
A robust tensor-based deep learning framework for solving partial differential equations using hp-Variational Physics-Informed Neural Networks (hp-VPINNs). The framework is based on the methodology presented in the [FastVPINNs Paper](https://arxiv.org/abs/2404.12063).
*This library is a highly optimised version of the the initial implementation of hp-VPINNs by [Kharazmi et al.](https://github.com/ehsankharazmi/hp-VPINNs). Refer the [hp-VPINNs Paper](https://arxiv.org/abs/2003.05385).*
## Authors 👨💻
---
[Thivin Anandh](https://github.com/thivinanandh), [Divij Ghose](https://divijghose.github.io/), [Sashikumaar Ganesan](https://cds.iisc.ac.in/faculty/sashi)
STARS Lab, Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
## Installation 🛠️
---
The build of the code is currently tested on Python versions (3.8, 3.9, 3.10, 3.11), on OS Ubuntu 20.04 and Ubuntu 22.04, MacOS-latest and Windows-latest (refer compatibility build [Compatability check](https://github.com/cmgcds/fastvpinns/actions/workflows/compatibility-tests.yml)).
You can install the package using pip as follows:
```bash
pip install fastvpinns
```
On ubuntu systems with libGL issues caused due to matplotlib or gmsh, please run the following command to install the required dependencies:
```bash
sudo apt-get install -y libglu1-mesa
```
For more information on the installation process, please refer to our documentation [here](https://cmgcds.github.io/fastvpinns/).
## Citing 📜
---
If you use this code in your research, please consider citing the following paper:
```bibtex
@misc{anandh2024fastvpinns,
title={FastVPINNs: Tensor-Driven Acceleration
of VPINNs for Complex Geometries},
author={Thivin Anandh, Divij Ghose, Himanshu Jain
and Sashikumaar Ganesan},
year={2024},
eprint={2404.12063},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
## Usage 🚀
---
For detailed usage, please refer to our documentation [here](https://cmgcds.github.io/fastvpinns/).
The package provides a simple API to train and solve PDE using VPINNs. The following code snippet demonstrates how to train a hp-VPINN model for the 2D Poisson equation for a structured grid. We could observe that we can solve a PDE using fastvpinns using 15 lines of code.
```python
#load the geometry
domain = Geometry_2D("quadrilateral", "internal", 100, 100, "./")
cells, boundary_points = domain.generate_quad_mesh_internal(x_limits=[0, 1],y_limits=[0, 1],n_cells_x=4, n_cells_y=4, num_boundary_points=400)
# load the FEspace
fespace = Fespace2D(domain.mesh,cells,boundary_points,domain.mesh_type,fe_order=5,fe_type="jacobi",quad_order=5,quad_type="legendre", fe_transformation_type="bilinear",bound_function_dict=bound_function_dict,bound_condition_dict=bound_condition_dict,
forcing_function=rhs,output_path=i_output_path,generate_mesh_plot=True)
# Instantiate Data handler
datahandler = DataHandler2D(fespace, domain, dtype=tf.float32)
# Instantiate the model with the loss function for the model
model = DenseModel(layer_dims=[2, 30, 30, 30, 1],learning_rate_dict=0.01,params_dict=params_dict,
loss_function=pde_loss_poisson, ## Loss function of poisson2D
input_tensors_list=[in_tensor, dir_in, dir_out],
orig_factor_matrices=[datahandler.shape_val_mat_list,datahandler.grad_x_mat_list, datahandler.grad_y_mat_list],
force_function_list=datahandler.forcing_function_list, tensor_dtype=tf.float32,
use_attention=i_use_attention, ## Archived (not in use)
activation=i_activation,
hessian=False)
# Train the model
for epoch in range(1000):
model.train_step()
```
Note : Supporting functions which define the actual solution and boundary conditions have to be passed to the main code.
## Contributing 🤝
---
This code is currently maintained by the authors as mentioned in the section above. We welcome contributions from the community. Please refer to the [documentation](https://cmgcds.github.io/fastvpinns/) for guidelines on contributing to the project.
## License 📑
---
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
Raw data
{
"_id": null,
"home_page": null,
"name": "fastvpinns",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "PDE, Neural Networks, Physics, AI, Machine Learning, variational PINNs, VPINNs, PINNs, Physics-informed neural networks",
"author": null,
"author_email": "Thivin Anandh <thivinanandh@gmail.com>, Divij Ghose <divijghose@gmail.com>, Sashikumaar Ganesan <sashi@iisc.ac.in>",
"download_url": "https://files.pythonhosted.org/packages/65/43/59d8bf28cc6066dbdb3f87e628e072ec32b2740d2e0f38d1efa5812b2195/fastvpinns-1.0.2.tar.gz",
"platform": null,
"description": "\n[![Unit tests](https://github.com/cmgcds/fastvpinns/actions/workflows/unit-tests.yml/badge.svg)](https://github.com/cmgcds/fastvpinns/actions/workflows/unit-tests.yml)\n[![Integration tests](https://github.com/cmgcds/fastvpinns/actions/workflows/integration-tests.yml/badge.svg)](https://github.com/cmgcds/fastvpinns/actions/workflows/integration-tests.yml)\n[![Compatability check](https://github.com/cmgcds/fastvpinns/actions/workflows/compatibility-tests.yml/badge.svg)](https://github.com/cmgcds/fastvpinns/actions/workflows/compatibility-tests.yml)\n[![codecov](https://codecov.io/gh/cmgcds/fastvpinns/graph/badge.svg?token=NI9G37R2Q7)](https://codecov.io/gh/cmgcds/fastvpinns)\n[![PyPI](https://badge.fury.io/py/fastvpinns.svg)](https://badge.fury.io/py/fastvpinns)\n\n[![MIT License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n![Python Versions](https://img.shields.io/badge/python-3.8%20|%203.9%20|%203.10%20|%203.11-blue)\n[![status](https://joss.theoj.org/papers/173453d08813f66a718f583502351747/status.svg)](https://joss.theoj.org/papers/173453d08813f66a718f583502351747)\n\n\n<br />\n<div align=\"center\">\n <a href=\"https://github.com/cmgcds/fastvpinns\">\n <img alt=\"FastVPINNs logo\" src=\"https://raw.githubusercontent.com/cmgcds/fastvpinns/main/Fastvpinns_logo.png\" width=\"500\">\n </a>\n\n<h3 align=\"center\">Tensor-driven accelerated framework for hp-variational pinns</h3>\n\n <p align=\"center\">\n <br />\n <a href=\"https://cmgcds.github.io/fastvpinns\"><strong>Link to Documentation \ud83d\udcda</strong></a>\n <br />\n\n </p>\n</div>\n\nA robust tensor-based deep learning framework for solving partial differential equations using hp-Variational Physics-Informed Neural Networks (hp-VPINNs). The framework is based on the methodology presented in the [FastVPINNs Paper](https://arxiv.org/abs/2404.12063).\n\n\n*This library is a highly optimised version of the the initial implementation of hp-VPINNs by [Kharazmi et al.](https://github.com/ehsankharazmi/hp-VPINNs). Refer the [hp-VPINNs Paper](https://arxiv.org/abs/2003.05385).*\n\n## Authors \ud83d\udc68\u200d\ud83d\udcbb\n---\n\n[Thivin Anandh](https://github.com/thivinanandh), [Divij Ghose](https://divijghose.github.io/), [Sashikumaar Ganesan](https://cds.iisc.ac.in/faculty/sashi)\n\nSTARS Lab, Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India\n\n## Installation \ud83d\udee0\ufe0f\n---\n\nThe build of the code is currently tested on Python versions (3.8, 3.9, 3.10, 3.11), on OS Ubuntu 20.04 and Ubuntu 22.04, MacOS-latest and Windows-latest (refer compatibility build [Compatability check](https://github.com/cmgcds/fastvpinns/actions/workflows/compatibility-tests.yml)).\n\nYou can install the package using pip as follows:\n\n```bash\npip install fastvpinns\n```\n\n On ubuntu systems with libGL issues caused due to matplotlib or gmsh, please run the following command to install the required dependencies:\n```bash\nsudo apt-get install -y libglu1-mesa \n```\n\nFor more information on the installation process, please refer to our documentation [here](https://cmgcds.github.io/fastvpinns/).\n\n## Citing \ud83d\udcdc\n---\n\nIf you use this code in your research, please consider citing the following paper:\n\n```bibtex\n@misc{anandh2024fastvpinns,\n title={FastVPINNs: Tensor-Driven Acceleration\n of VPINNs for Complex Geometries}, \n author={Thivin Anandh, Divij Ghose, Himanshu Jain\n and Sashikumaar Ganesan},\n year={2024},\n eprint={2404.12063},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n```\n\n## Usage \ud83d\ude80\n---\n\nFor detailed usage, please refer to our documentation [here](https://cmgcds.github.io/fastvpinns/).\n\nThe package provides a simple API to train and solve PDE using VPINNs. The following code snippet demonstrates how to train a hp-VPINN model for the 2D Poisson equation for a structured grid. We could observe that we can solve a PDE using fastvpinns using 15 lines of code.\n\n```python\n#load the geometry \ndomain = Geometry_2D(\"quadrilateral\", \"internal\", 100, 100, \"./\")\ncells, boundary_points = domain.generate_quad_mesh_internal(x_limits=[0, 1],y_limits=[0, 1],n_cells_x=4, n_cells_y=4, num_boundary_points=400)\n\n# load the FEspace\nfespace = Fespace2D(domain.mesh,cells,boundary_points,domain.mesh_type,fe_order=5,fe_type=\"jacobi\",quad_order=5,quad_type=\"legendre\", fe_transformation_type=\"bilinear\",bound_function_dict=bound_function_dict,bound_condition_dict=bound_condition_dict,\nforcing_function=rhs,output_path=i_output_path,generate_mesh_plot=True)\n\n# Instantiate Data handler \ndatahandler = DataHandler2D(fespace, domain, dtype=tf.float32)\n\n# Instantiate the model with the loss function for the model \nmodel = DenseModel(layer_dims=[2, 30, 30, 30, 1],learning_rate_dict=0.01,params_dict=params_dict,\n loss_function=pde_loss_poisson, ## Loss function of poisson2D\n input_tensors_list=[in_tensor, dir_in, dir_out],\n orig_factor_matrices=[datahandler.shape_val_mat_list,datahandler.grad_x_mat_list, datahandler.grad_y_mat_list],\n force_function_list=datahandler.forcing_function_list, tensor_dtype=tf.float32,\n use_attention=i_use_attention, ## Archived (not in use)\n activation=i_activation,\n hessian=False)\n\n# Train the model\nfor epoch in range(1000):\n model.train_step()\n```\n\nNote : Supporting functions which define the actual solution and boundary conditions have to be passed to the main code.\n\n## Contributing \ud83e\udd1d\n---\nThis code is currently maintained by the authors as mentioned in the section above. We welcome contributions from the community. Please refer to the [documentation](https://cmgcds.github.io/fastvpinns/) for guidelines on contributing to the project.\n\n## License \ud83d\udcd1\n---\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. \n",
"bugtrack_url": null,
"license": null,
"summary": "A fast tensor-driven variational physics-informed neural network library for solving PDEs.",
"version": "1.0.2",
"project_urls": {
"Documentation": "https://cmgcds.github.io/fastvpinns/",
"Homepage": "https://github.com/cmgcds/fastvpinns",
"Issues": "https://github.com/cmgcds/fastvpinns/issues",
"logo": "https://raw.githubusercontent.com/cmgcds/fastvpinns/main/Fastvpinns_logo.png"
},
"split_keywords": [
"pde",
" neural networks",
" physics",
" ai",
" machine learning",
" variational pinns",
" vpinns",
" pinns",
" physics-informed neural networks"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7ff7c47b5b315e62a42e9897e42e7f93963be08f20ec93d0f73495bd240cd822",
"md5": "ccdceccf043c92c1ca2ab2255453b682",
"sha256": "670d0862d88348a8752c6126738fb9817c800ae4316f5e9ab9ce973fa590f3ca"
},
"downloads": -1,
"filename": "fastvpinns-1.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ccdceccf043c92c1ca2ab2255453b682",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 67791,
"upload_time": "2024-07-29T19:09:23",
"upload_time_iso_8601": "2024-07-29T19:09:23.140824Z",
"url": "https://files.pythonhosted.org/packages/7f/f7/c47b5b315e62a42e9897e42e7f93963be08f20ec93d0f73495bd240cd822/fastvpinns-1.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "654359d8bf28cc6066dbdb3f87e628e072ec32b2740d2e0f38d1efa5812b2195",
"md5": "17248a0b574ac04a82951237e61b101a",
"sha256": "a3073f18b1d9cdb67a3027e726a7a7bd058a4d10bbfa53d43aa296c4f178914d"
},
"downloads": -1,
"filename": "fastvpinns-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "17248a0b574ac04a82951237e61b101a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 45554,
"upload_time": "2024-07-29T19:09:25",
"upload_time_iso_8601": "2024-07-29T19:09:25.044595Z",
"url": "https://files.pythonhosted.org/packages/65/43/59d8bf28cc6066dbdb3f87e628e072ec32b2740d2e0f38d1efa5812b2195/fastvpinns-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-29 19:09:25",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "cmgcds",
"github_project": "fastvpinns",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"requirements": [
{
"name": "numpy",
"specs": [
[
"<=",
"1.23.5"
],
[
">=",
"1.21"
]
]
},
{
"name": "pandas",
"specs": [
[
"<",
"1.4.4"
]
]
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "tensorflow",
"specs": [
[
">=",
"2.9.1"
],
[
"<=",
"2.13.0"
]
]
},
{
"name": "pytest",
"specs": [
[
"==",
"8.0.2"
]
]
},
{
"name": "meshio",
"specs": [
[
"==",
"5.3.4"
]
]
},
{
"name": "pyDOE",
"specs": [
[
"==",
"0.3.8"
]
]
},
{
"name": "tqdm",
"specs": [
[
"==",
"4.66.2"
]
]
},
{
"name": "scipy",
"specs": []
},
{
"name": "gmsh",
"specs": [
[
"==",
"4.11.0"
]
]
},
{
"name": "pyyaml",
"specs": []
},
{
"name": "rich",
"specs": [
[
"==",
"12.5.1"
]
]
},
{
"name": "black",
"specs": []
},
{
"name": "pre-commit",
"specs": []
}
],
"lcname": "fastvpinns"
}