# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "1.1.0",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "449ca0820c23afe153d13e5b0b8e3218550cca794398fc0f4e42eb34eeae54a3",
"md5": "0ab44a2b9b8983c10a86a4152ebf538e",
"sha256": "97b88a8f6895b0369782f84e31352b9b0dd548cdd10cbb14da6892bc3f792a51"
},
"downloads": -1,
"filename": "fbgemm_gpu-1.1.0-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "0ab44a2b9b8983c10a86a4152ebf538e",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 417175644,
"upload_time": "2025-01-29T20:15:09",
"upload_time_iso_8601": "2025-01-29T20:15:09.646171Z",
"url": "https://files.pythonhosted.org/packages/44/9c/a0820c23afe153d13e5b0b8e3218550cca794398fc0f4e42eb34eeae54a3/fbgemm_gpu-1.1.0-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "06ad03b1b60c5c81597874a226f9274ca09af976037bae8148b40181a0ebc4fa",
"md5": "2e3949a56e604ef82e434f1d3e0685ec",
"sha256": "721638a849605d20a831348e9b3fb5cb1727577b8f6fb0e8561e91107fb1b85f"
},
"downloads": -1,
"filename": "fbgemm_gpu-1.1.0-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "2e3949a56e604ef82e434f1d3e0685ec",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 417176114,
"upload_time": "2025-01-29T20:13:44",
"upload_time_iso_8601": "2025-01-29T20:13:44.590406Z",
"url": "https://files.pythonhosted.org/packages/06/ad/03b1b60c5c81597874a226f9274ca09af976037bae8148b40181a0ebc4fa/fbgemm_gpu-1.1.0-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "fcf06a93cfe25bd13b92b3ea8d821756650d8e66873d836cdb44a4dde67e3c5e",
"md5": "76665b7d3c56eed49dbc7a822825938e",
"sha256": "1cfc1abd47f08b40e486cae7a0ffa943b04120d30453c9702c70439f7541e223"
},
"downloads": -1,
"filename": "fbgemm_gpu-1.1.0-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "76665b7d3c56eed49dbc7a822825938e",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 417175357,
"upload_time": "2025-01-29T20:12:32",
"upload_time_iso_8601": "2025-01-29T20:12:32.048065Z",
"url": "https://files.pythonhosted.org/packages/fc/f0/6a93cfe25bd13b92b3ea8d821756650d8e66873d836cdb44a4dde67e3c5e/fbgemm_gpu-1.1.0-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bde3891a038e41c3b9cc7cd8c32b5606f77fe51a5a2979c5db0bd93170dc72cb",
"md5": "19de2d1295c8ddb49cc67941e6da82df",
"sha256": "9ef7c41b4a3e050f6cb7d8312e808ba48009856dabda579ef21818a7823fadf5"
},
"downloads": -1,
"filename": "fbgemm_gpu-1.1.0-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "19de2d1295c8ddb49cc67941e6da82df",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 417175904,
"upload_time": "2025-01-29T20:12:05",
"upload_time_iso_8601": "2025-01-29T20:12:05.404441Z",
"url": "https://files.pythonhosted.org/packages/bd/e3/891a038e41c3b9cc7cd8c32b5606f77fe51a5a2979c5db0bd93170dc72cb/fbgemm_gpu-1.1.0-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d295c5d55bef5a800079db88594859dcdfbb015f6fca773f041a5263111ada94",
"md5": "ddced391109446cf57f4192c5a19cd9f",
"sha256": "3ef2477c9ff5a1c74c2ddcf1110c4a59349b3cdeae79de926808125f0f20ec21"
},
"downloads": -1,
"filename": "fbgemm_gpu-1.1.0-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "ddced391109446cf57f4192c5a19cd9f",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 417175781,
"upload_time": "2025-01-29T20:15:37",
"upload_time_iso_8601": "2025-01-29T20:15:37.528955Z",
"url": "https://files.pythonhosted.org/packages/d2/95/c5d55bef5a800079db88594859dcdfbb015f6fca773f041a5263111ada94/fbgemm_gpu-1.1.0-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-29 20:15:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu"
}