# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "1.2.0",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "d6e27fb4aaa03b06c82b54934fdc61be4fde5294c6c0f88dee71eb00a001f5b1",
"md5": "a4c7c38e271f2cb3c88b9e77c1586716",
"sha256": "95f083a0109eb48807fd46c09dc03499888bec8eaf9a4a75d7e8225eb7f38f93"
},
"downloads": -1,
"filename": "fbgemm_gpu-1.2.0-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "a4c7c38e271f2cb3c88b9e77c1586716",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 533688907,
"upload_time": "2025-04-24T06:23:37",
"upload_time_iso_8601": "2025-04-24T06:23:37.496038Z",
"url": "https://files.pythonhosted.org/packages/d6/e2/7fb4aaa03b06c82b54934fdc61be4fde5294c6c0f88dee71eb00a001f5b1/fbgemm_gpu-1.2.0-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4b00a4b91b8ac375de1bd9d1b54e5987530b69888e004dbddd1300223bb7b6b6",
"md5": "9cdc6dd09ab43051006006b0f5d3b717",
"sha256": "968856c70ec901e7c508967befde8c08ea25f460459eff00ac40f288305f3ba1"
},
"downloads": -1,
"filename": "fbgemm_gpu-1.2.0-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "9cdc6dd09ab43051006006b0f5d3b717",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 533690847,
"upload_time": "2025-04-24T06:23:27",
"upload_time_iso_8601": "2025-04-24T06:23:27.530240Z",
"url": "https://files.pythonhosted.org/packages/4b/00/a4b91b8ac375de1bd9d1b54e5987530b69888e004dbddd1300223bb7b6b6/fbgemm_gpu-1.2.0-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1a56ba65e1d2228b8d8000e518a2ff53bdfc0ce51fcd462231b5eebd5f6a8c6c",
"md5": "028d212c3f7ed04e7526c471b9f68ee2",
"sha256": "0e8087b18e72ba1b72d9522a98d6f00a9e52cbdebfc15f4d8c001ab232881095"
},
"downloads": -1,
"filename": "fbgemm_gpu-1.2.0-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "028d212c3f7ed04e7526c471b9f68ee2",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 533687893,
"upload_time": "2025-04-24T06:22:01",
"upload_time_iso_8601": "2025-04-24T06:22:01.323021Z",
"url": "https://files.pythonhosted.org/packages/1a/56/ba65e1d2228b8d8000e518a2ff53bdfc0ce51fcd462231b5eebd5f6a8c6c/fbgemm_gpu-1.2.0-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "44d9a28d51b92192e2093061b3bcc26e6a6247e9e9d36bc688df24b132480db9",
"md5": "86836f96169759dd644dad255c53a98c",
"sha256": "b00263dbd1dd4b8add80158916a787f5738efa0b334c8dca49522d5e624f8ab4"
},
"downloads": -1,
"filename": "fbgemm_gpu-1.2.0-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "86836f96169759dd644dad255c53a98c",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 533683490,
"upload_time": "2025-04-24T06:22:14",
"upload_time_iso_8601": "2025-04-24T06:22:14.334605Z",
"url": "https://files.pythonhosted.org/packages/44/d9/a28d51b92192e2093061b3bcc26e6a6247e9e9d36bc688df24b132480db9/fbgemm_gpu-1.2.0-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9eb988331fa49d45ca2cc500d8a38129f01b514732c58254e6cdb71f8716738a",
"md5": "ed12d9d2e5b6adf9c3488d6506b0b5e3",
"sha256": "b47108bbd1c02dc4584607d6ed0ee43b8746fd8ecc047cdaf2d43c88792bcd05"
},
"downloads": -1,
"filename": "fbgemm_gpu-1.2.0-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "ed12d9d2e5b6adf9c3488d6506b0b5e3",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 533693826,
"upload_time": "2025-04-24T06:24:00",
"upload_time_iso_8601": "2025-04-24T06:24:00.498180Z",
"url": "https://files.pythonhosted.org/packages/9e/b9/88331fa49d45ca2cc500d8a38129f01b514732c58254e6cdb71f8716738a/fbgemm_gpu-1.2.0-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-04-24 06:23:37",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu"
}