# FBGEMM_GPU
[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-cpu",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "1.0.0",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e5ccdcf0179e9ad3091fbe2c48683fca4f6dfd11a88ac8ab6e6c0a8e10bb22aa",
"md5": "7f4280532c4d1055364d1beb81cb4e12",
"sha256": "7c327793f5b08e961d213ba7b7402a9d9e5e0e2f5b308cfae7073c58908aac05"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.0.0-cp310-cp310-manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "7f4280532c4d1055364d1beb81cb4e12",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 2590540,
"upload_time": "2024-10-18T00:43:39",
"upload_time_iso_8601": "2024-10-18T00:43:39.740282Z",
"url": "https://files.pythonhosted.org/packages/e5/cc/dcf0179e9ad3091fbe2c48683fca4f6dfd11a88ac8ab6e6c0a8e10bb22aa/fbgemm_gpu_cpu-1.0.0-cp310-cp310-manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "49b68c7b5e2c7566c8289af7cad6bc62e4b6b5c36007ef8aceb844eca3f5679b",
"md5": "12030f68b4fe06b5730782de987f3ad2",
"sha256": "d9acee76775b2e29343eaf61d82eac742b0ae1987ae1e9abefcfda0b81b39058"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.0.0-cp310-cp310-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "12030f68b4fe06b5730782de987f3ad2",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 3443402,
"upload_time": "2024-10-18T00:35:18",
"upload_time_iso_8601": "2024-10-18T00:35:18.889836Z",
"url": "https://files.pythonhosted.org/packages/49/b6/8c7b5e2c7566c8289af7cad6bc62e4b6b5c36007ef8aceb844eca3f5679b/fbgemm_gpu_cpu-1.0.0-cp310-cp310-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8798f4c0a19c1c8a4db1e5c26ed8d06db4a893a264af07053b5ec5019f69dc01",
"md5": "0f36c6abc3aefb916ff1392c10cd0214",
"sha256": "7600c29e103e8140a5a6f28de79d90d9edffbcbd96cd231f4d382fec627224d5"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.0.0-cp311-cp311-manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "0f36c6abc3aefb916ff1392c10cd0214",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 2590542,
"upload_time": "2024-10-18T00:42:25",
"upload_time_iso_8601": "2024-10-18T00:42:25.265365Z",
"url": "https://files.pythonhosted.org/packages/87/98/f4c0a19c1c8a4db1e5c26ed8d06db4a893a264af07053b5ec5019f69dc01/fbgemm_gpu_cpu-1.0.0-cp311-cp311-manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "328f128c68f16e59f360e7dc0dd22c6f47bd1f6fd3712af505f86b6f03787438",
"md5": "45770c4488340267207a4e7baed78127",
"sha256": "3a998ff2c06e6a354a4ab9d8775770bc50353cadf3c4ad99c18a89eeb1da07c4"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.0.0-cp311-cp311-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "45770c4488340267207a4e7baed78127",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 3443404,
"upload_time": "2024-10-18T00:34:24",
"upload_time_iso_8601": "2024-10-18T00:34:24.688774Z",
"url": "https://files.pythonhosted.org/packages/32/8f/128c68f16e59f360e7dc0dd22c6f47bd1f6fd3712af505f86b6f03787438/fbgemm_gpu_cpu-1.0.0-cp311-cp311-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ec85c0b6aa319ce5dfcc9827b0750acf27b53bfb27bf6bb693f75f3ec9c595cb",
"md5": "292b52a00c7a2af165eecc00b9837a56",
"sha256": "2db3d15e9ccf4035f6c873d0518950eb8ece1388df92387b7355c50e97d3cb4b"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.0.0-cp312-cp312-manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "292b52a00c7a2af165eecc00b9837a56",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 2590543,
"upload_time": "2024-10-18T00:42:38",
"upload_time_iso_8601": "2024-10-18T00:42:38.022224Z",
"url": "https://files.pythonhosted.org/packages/ec/85/c0b6aa319ce5dfcc9827b0750acf27b53bfb27bf6bb693f75f3ec9c595cb/fbgemm_gpu_cpu-1.0.0-cp312-cp312-manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3728fa3b91b1b8265408e3108f34f030493f24cdeb0c483a1111982825bff023",
"md5": "d98e813b086c5d29e0375ff2ea56d5a1",
"sha256": "50599252e71cb92e3a85c887ff51d846afef8a3cedfd1d98bd20cc85d3a9be75"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.0.0-cp312-cp312-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "d98e813b086c5d29e0375ff2ea56d5a1",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 3443405,
"upload_time": "2024-10-18T00:34:06",
"upload_time_iso_8601": "2024-10-18T00:34:06.759445Z",
"url": "https://files.pythonhosted.org/packages/37/28/fa3b91b1b8265408e3108f34f030493f24cdeb0c483a1111982825bff023/fbgemm_gpu_cpu-1.0.0-cp312-cp312-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ea8c392f2db394c736b581d341b175fb86687bc2a18ac011523671e68ee32cb9",
"md5": "3a22e58d755670f059b2ebc2237a839b",
"sha256": "2be67cc9b037cd16e4b2050218c1913c31568bd69af63f246135f3fbfb15b66e"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.0.0-cp39-cp39-manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "3a22e58d755670f059b2ebc2237a839b",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 2590009,
"upload_time": "2024-10-18T00:41:46",
"upload_time_iso_8601": "2024-10-18T00:41:46.342882Z",
"url": "https://files.pythonhosted.org/packages/ea/8c/392f2db394c736b581d341b175fb86687bc2a18ac011523671e68ee32cb9/fbgemm_gpu_cpu-1.0.0-cp39-cp39-manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b96ff00b305dc43afd0c001163a2692fbc165d887ca1059a28a08a63401344b6",
"md5": "88b5915c58571267e4351003c1d4bdac",
"sha256": "da943a098c1d183c05cd1faf4225f826599929c1060785b97aad683f3d1b4406"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.0.0-cp39-cp39-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "88b5915c58571267e4351003c1d4bdac",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 3443369,
"upload_time": "2024-10-18T00:34:22",
"upload_time_iso_8601": "2024-10-18T00:34:22.636999Z",
"url": "https://files.pythonhosted.org/packages/b9/6f/f00b305dc43afd0c001163a2692fbc165d887ca1059a28a08a63401344b6/fbgemm_gpu_cpu-1.0.0-cp39-cp39-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-18 00:43:39",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-cpu"
}