# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-cpu",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "1.3.0",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "5ede93e50bdf9d9e6921d624b7ba13ed5afa3ee7ee38c7a1ebdf6c76ec7e56b1",
"md5": "7e04a39ccdfcce94cac4ce659bcfd2b7",
"sha256": "33d4e9c2ea4e9a26432c59bfb855e1b0b3d86df675abad5dc30903475b68828f"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.3.0-cp310-cp310-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "7e04a39ccdfcce94cac4ce659bcfd2b7",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 4256114,
"upload_time": "2025-08-20T18:58:59",
"upload_time_iso_8601": "2025-08-20T18:58:59.777747Z",
"url": "https://files.pythonhosted.org/packages/5e/de/93e50bdf9d9e6921d624b7ba13ed5afa3ee7ee38c7a1ebdf6c76ec7e56b1/fbgemm_gpu_cpu-1.3.0-cp310-cp310-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "dde56eea674aebe83ca1f98e8592233899a65845063d1be9d87be193ce92760d",
"md5": "fedae806421d66665af4cc0ff678be76",
"sha256": "daf4086fd887e657942d86ccbabc8b7389993220f8bcc497fc62b9b18113ea8a"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.3.0-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "fedae806421d66665af4cc0ff678be76",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 5465147,
"upload_time": "2025-08-20T18:49:15",
"upload_time_iso_8601": "2025-08-20T18:49:15.260963Z",
"url": "https://files.pythonhosted.org/packages/dd/e5/6eea674aebe83ca1f98e8592233899a65845063d1be9d87be193ce92760d/fbgemm_gpu_cpu-1.3.0-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "95b043c19b5633955bf89c1ff4af07c85b225b40092a8988942e38e02cb2cf3f",
"md5": "641224335659f59204770b303b09a099",
"sha256": "b736bdad29864526f79b859303cccc48d1539125af47a3936200c2e5c964c3e1"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.3.0-cp311-cp311-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "641224335659f59204770b303b09a099",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 4256126,
"upload_time": "2025-08-20T18:58:21",
"upload_time_iso_8601": "2025-08-20T18:58:21.547747Z",
"url": "https://files.pythonhosted.org/packages/95/b0/43c19b5633955bf89c1ff4af07c85b225b40092a8988942e38e02cb2cf3f/fbgemm_gpu_cpu-1.3.0-cp311-cp311-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7d9721e51292acc90aee8adf42c5d5b472189a4b8b21880750c81e97c51f8eda",
"md5": "74fdfca47c983ce4f80d7d1544ff4d31",
"sha256": "b5010ea58335ff4ba9c3c8107f3bb73991b0890437c5d7af8a0849a307fbfb71"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.3.0-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "74fdfca47c983ce4f80d7d1544ff4d31",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 5465158,
"upload_time": "2025-08-20T18:51:45",
"upload_time_iso_8601": "2025-08-20T18:51:45.906030Z",
"url": "https://files.pythonhosted.org/packages/7d/97/21e51292acc90aee8adf42c5d5b472189a4b8b21880750c81e97c51f8eda/fbgemm_gpu_cpu-1.3.0-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0768463b084cb7792d95d3b722278428d080a15f762e91617b70e83826bb4dc2",
"md5": "98a89bcea327223ec648afa3ba768b7b",
"sha256": "80554a589d6c38226d9f9109d99d6fc20f3388ad4cdcba85dd8ee13119649a4d"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.3.0-cp312-cp312-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "98a89bcea327223ec648afa3ba768b7b",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 4256125,
"upload_time": "2025-08-20T18:57:16",
"upload_time_iso_8601": "2025-08-20T18:57:16.947391Z",
"url": "https://files.pythonhosted.org/packages/07/68/463b084cb7792d95d3b722278428d080a15f762e91617b70e83826bb4dc2/fbgemm_gpu_cpu-1.3.0-cp312-cp312-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2377a32a134735ca06e7363ab02e1080aa3e6f79bae4129efad6d983be9aad47",
"md5": "2f03354a843217f985c4a3097563435b",
"sha256": "502f971abee4d08746e1b86d3c07cd9bf9562e3d070be9aa347702bb8e2eaada"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.3.0-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "2f03354a843217f985c4a3097563435b",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 5465163,
"upload_time": "2025-08-20T18:49:44",
"upload_time_iso_8601": "2025-08-20T18:49:44.156260Z",
"url": "https://files.pythonhosted.org/packages/23/77/a32a134735ca06e7363ab02e1080aa3e6f79bae4129efad6d983be9aad47/fbgemm_gpu_cpu-1.3.0-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "561dcf209fdf78ff79081ccb416358d83a2e0af6cb921a3bb55f7befc6e6dbf6",
"md5": "5de0f89c00d34f6d51b455e7a2880af7",
"sha256": "f05926ca3e81dd9549abf637ca80f536ca20c9fc7438f4cb5a0b9f99dedc8fc4"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.3.0-cp313-cp313-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "5de0f89c00d34f6d51b455e7a2880af7",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 4256122,
"upload_time": "2025-08-20T18:56:55",
"upload_time_iso_8601": "2025-08-20T18:56:55.586338Z",
"url": "https://files.pythonhosted.org/packages/56/1d/cf209fdf78ff79081ccb416358d83a2e0af6cb921a3bb55f7befc6e6dbf6/fbgemm_gpu_cpu-1.3.0-cp313-cp313-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "01233b3fff2acb804d44cd1d94e126fe4f83c4752dc3fe938fecd03b94b902e9",
"md5": "6e8184153bbf97cec22afe98e6600721",
"sha256": "46187a32204174ba85ecb3e2d6a974aacf12b05b266cf01cc596c61689b71b01"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.3.0-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "6e8184153bbf97cec22afe98e6600721",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 5465161,
"upload_time": "2025-08-20T18:49:17",
"upload_time_iso_8601": "2025-08-20T18:49:17.778244Z",
"url": "https://files.pythonhosted.org/packages/01/23/3b3fff2acb804d44cd1d94e126fe4f83c4752dc3fe938fecd03b94b902e9/fbgemm_gpu_cpu-1.3.0-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1c2d28f7f1a0f8134b9678c10a54190797d065c6ac345aade1c2699769420af5",
"md5": "681c96d6048e66b378e5338105381bc9",
"sha256": "e79d68e132ccb27cf5b6c2235dd66d74fb6c2d7cb28f29954430a6f5843d867c"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.3.0-cp39-cp39-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "681c96d6048e66b378e5338105381bc9",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 4256184,
"upload_time": "2025-08-20T18:58:40",
"upload_time_iso_8601": "2025-08-20T18:58:40.734086Z",
"url": "https://files.pythonhosted.org/packages/1c/2d/28f7f1a0f8134b9678c10a54190797d065c6ac345aade1c2699769420af5/fbgemm_gpu_cpu-1.3.0-cp39-cp39-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bae42b58c2c8ea1d3aa36c42f7c8453a9372ac2171092de8fdfdad4ef5f992e2",
"md5": "75021e2e2e09d66f48ee10316ddff00a",
"sha256": "a5e568299ef02184821e94a460eb223c80d3ee4cf7ac5a6c8239ffdfe05a8bca"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.3.0-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "75021e2e2e09d66f48ee10316ddff00a",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 5465026,
"upload_time": "2025-08-20T18:49:45",
"upload_time_iso_8601": "2025-08-20T18:49:45.302424Z",
"url": "https://files.pythonhosted.org/packages/ba/e4/2b58c2c8ea1d3aa36c42f7c8453a9372ac2171092de8fdfdad4ef5f992e2/fbgemm_gpu_cpu-1.3.0-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-20 18:58:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-cpu"
}