# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-cpu",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "1.1.0",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "64a454c4063c7ea0e88cbedab04e2cc022d00244a15cc6bfa4d7509ee7700d5c",
"md5": "92464c58aedea087763a2510d82e1361",
"sha256": "e027bb609fef113134532bef13a7f5ff81c1cd37badb43188b961961055694cc"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.1.0-cp310-cp310-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "92464c58aedea087763a2510d82e1361",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 2703012,
"upload_time": "2025-01-29T19:31:41",
"upload_time_iso_8601": "2025-01-29T19:31:41.304437Z",
"url": "https://files.pythonhosted.org/packages/64/a4/54c4063c7ea0e88cbedab04e2cc022d00244a15cc6bfa4d7509ee7700d5c/fbgemm_gpu_cpu-1.1.0-cp310-cp310-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ff22db3ce702c03234b23e881efd9d183a8975372e60680aaccdcf25bb2092cb",
"md5": "37f728c3e8f2b032319ea29484ed4d4e",
"sha256": "25da08e3a516a61a11cf470ebb3b5c292e8eff5d5ee98bd90d972b2d79d9fe84"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.1.0-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "37f728c3e8f2b032319ea29484ed4d4e",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 3826225,
"upload_time": "2025-01-29T19:24:17",
"upload_time_iso_8601": "2025-01-29T19:24:17.632815Z",
"url": "https://files.pythonhosted.org/packages/ff/22/db3ce702c03234b23e881efd9d183a8975372e60680aaccdcf25bb2092cb/fbgemm_gpu_cpu-1.1.0-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e994d9d323714b570b1c2a374e31ba52cc6ec9a6688cbc3a287b7e2d61115975",
"md5": "5b160efb8dabd1086390df01bf4ee156",
"sha256": "26cad5eb6d85d840e3f832e93cd56c111ae45ffd2ccd0623ef85c9ab22981920"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.1.0-cp311-cp311-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "5b160efb8dabd1086390df01bf4ee156",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 2703030,
"upload_time": "2025-01-29T19:31:35",
"upload_time_iso_8601": "2025-01-29T19:31:35.164302Z",
"url": "https://files.pythonhosted.org/packages/e9/94/d9d323714b570b1c2a374e31ba52cc6ec9a6688cbc3a287b7e2d61115975/fbgemm_gpu_cpu-1.1.0-cp311-cp311-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7410cd12ba42fab3ae23c1aa60124673a939fdbc43317e2421fb55a65b5ad31b",
"md5": "b3e87c9dffe996b1e24f3f8f18ac679d",
"sha256": "ced7c0c1468d3451aff92ce2ba9689b455e732dc2ebd233b473379f8c88ef3d8"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.1.0-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "b3e87c9dffe996b1e24f3f8f18ac679d",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 3826235,
"upload_time": "2025-01-29T19:24:04",
"upload_time_iso_8601": "2025-01-29T19:24:04.906157Z",
"url": "https://files.pythonhosted.org/packages/74/10/cd12ba42fab3ae23c1aa60124673a939fdbc43317e2421fb55a65b5ad31b/fbgemm_gpu_cpu-1.1.0-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f8d13a9ded370fe66b1760eb51b9cdc7c68a915ee55eb9e48a868c119264d582",
"md5": "5c0153f2f25fa0458c0465d73cf20e58",
"sha256": "3a16a2dd06f4eb5e4eeaac824d8fb960a3c8b6c204ff21c2d21bd68583a5b4ba"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.1.0-cp312-cp312-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "5c0153f2f25fa0458c0465d73cf20e58",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 2703029,
"upload_time": "2025-01-29T19:31:13",
"upload_time_iso_8601": "2025-01-29T19:31:13.381146Z",
"url": "https://files.pythonhosted.org/packages/f8/d1/3a9ded370fe66b1760eb51b9cdc7c68a915ee55eb9e48a868c119264d582/fbgemm_gpu_cpu-1.1.0-cp312-cp312-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1ff2f10b33258e2d6ecaa8874593a45f333e6d312767b40d2ef37130c31494a1",
"md5": "160c06955d90ea284a94c2d620ddbd4b",
"sha256": "e6e8222f1c1c93b268513f163eb5b0647dc0818768912690f63449e3ac058fcc"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.1.0-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "160c06955d90ea284a94c2d620ddbd4b",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 3826237,
"upload_time": "2025-01-29T19:24:08",
"upload_time_iso_8601": "2025-01-29T19:24:08.608175Z",
"url": "https://files.pythonhosted.org/packages/1f/f2/f10b33258e2d6ecaa8874593a45f333e6d312767b40d2ef37130c31494a1/fbgemm_gpu_cpu-1.1.0-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "fbd51d1fef299a9347d85aff0b17455fe51f9307b4d6e3ee082c0c1d9118ee01",
"md5": "2661859fb1a4e849c4d46ba021955b2e",
"sha256": "1953eaf1a12384477d4c9bb5fbe2782990d3996ff4a913edc252d7054f6dc631"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.1.0-cp313-cp313-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "2661859fb1a4e849c4d46ba021955b2e",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 2703026,
"upload_time": "2025-01-29T19:29:56",
"upload_time_iso_8601": "2025-01-29T19:29:56.013792Z",
"url": "https://files.pythonhosted.org/packages/fb/d5/1d1fef299a9347d85aff0b17455fe51f9307b4d6e3ee082c0c1d9118ee01/fbgemm_gpu_cpu-1.1.0-cp313-cp313-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "85c5a803d9ae9f76926de7a0674870f3f926db041b0ed80e479f619f26c4acf6",
"md5": "690479b9aeee90cec6f921f90f7c8575",
"sha256": "ecf3e807a7e93afb82b3ca59f6e2e8637e49b81164f905e3906d45468e403188"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.1.0-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "690479b9aeee90cec6f921f90f7c8575",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 3826238,
"upload_time": "2025-01-29T19:23:19",
"upload_time_iso_8601": "2025-01-29T19:23:19.484777Z",
"url": "https://files.pythonhosted.org/packages/85/c5/a803d9ae9f76926de7a0674870f3f926db041b0ed80e479f619f26c4acf6/fbgemm_gpu_cpu-1.1.0-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c32b0be745c9a9ce3fdba15beddeffc25fac5fe51d1f781ba361c89f37fcba43",
"md5": "89ffcdd3d56595355748bde27136fa04",
"sha256": "beddf07534355ac87c6d175e5358a751765345bb4486b9e57be783c5283435b2"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.1.0-cp39-cp39-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "89ffcdd3d56595355748bde27136fa04",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 2702966,
"upload_time": "2025-01-29T19:32:12",
"upload_time_iso_8601": "2025-01-29T19:32:12.477735Z",
"url": "https://files.pythonhosted.org/packages/c3/2b/0be745c9a9ce3fdba15beddeffc25fac5fe51d1f781ba361c89f37fcba43/fbgemm_gpu_cpu-1.1.0-cp39-cp39-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ca5019ae3c8be525ba8b71219664f14921b2b2ce3d17e483cee09b53afd6c6c2",
"md5": "47f89b2c6bea8f7924d4ff2e90e42da0",
"sha256": "2a35ba3e68244f2aee817b17922e9f1b23795c0215ea131e2dbb862ec5b69b98"
},
"downloads": -1,
"filename": "fbgemm_gpu_cpu-1.1.0-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "47f89b2c6bea8f7924d4ff2e90e42da0",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 3826242,
"upload_time": "2025-01-29T19:24:16",
"upload_time_iso_8601": "2025-01-29T19:24:16.885866Z",
"url": "https://files.pythonhosted.org/packages/ca/50/19ae3c8be525ba8b71219664f14921b2b2ce3d17e483cee09b53afd6c6c2/fbgemm_gpu_cpu-1.1.0-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-29 19:31:41",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-cpu"
}