fbgemm-gpu-genai


Namefbgemm-gpu-genai JSON
Version 1.4.1 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2025-10-24 06:26:50
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-genai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "1.4.1",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "adb38f18f024cf053b227d8b8f5973070e29e44dacc1ae0e10e66293c79cae1a",
                "md5": "a920b81b17a9372d1ffdf0873fbf358f",
                "sha256": "2eaef752d29f513a1089deaa883498d1bfc8e59ad5a755941393fde46385fcfa"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_genai-1.4.1-cp310-cp310-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "a920b81b17a9372d1ffdf0873fbf358f",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 63256432,
            "upload_time": "2025-10-24T06:26:50",
            "upload_time_iso_8601": "2025-10-24T06:26:50.299229Z",
            "url": "https://files.pythonhosted.org/packages/ad/b3/8f18f024cf053b227d8b8f5973070e29e44dacc1ae0e10e66293c79cae1a/fbgemm_gpu_genai-1.4.1-cp310-cp310-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0c92cdded43731cf23106b01d18b57cc61f9e8ec6870c81ef4d9bb50fb8edc28",
                "md5": "2d6f155fa5554d9806bd22253d1fd115",
                "sha256": "8e77b62473aa6dc4013cfd791100eb1ed24aab3d90546d353a4fde44ae09b26c"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_genai-1.4.1-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "2d6f155fa5554d9806bd22253d1fd115",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 64199378,
            "upload_time": "2025-10-24T06:27:01",
            "upload_time_iso_8601": "2025-10-24T06:27:01.115789Z",
            "url": "https://files.pythonhosted.org/packages/0c/92/cdded43731cf23106b01d18b57cc61f9e8ec6870c81ef4d9bb50fb8edc28/fbgemm_gpu_genai-1.4.1-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "20070c4daf1213df6593ca19659f80cc21cdc7b11fe089895090fdc7b788f570",
                "md5": "7ec68661621b55c75896ed9ef49f7109",
                "sha256": "7c7f0fa4f3423506021b4cfc7f9c1bec1ba022b92617ca8882c09304329bc029"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_genai-1.4.1-cp312-cp312-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "7ec68661621b55c75896ed9ef49f7109",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 63256437,
            "upload_time": "2025-10-24T06:27:22",
            "upload_time_iso_8601": "2025-10-24T06:27:22.018523Z",
            "url": "https://files.pythonhosted.org/packages/20/07/0c4daf1213df6593ca19659f80cc21cdc7b11fe089895090fdc7b788f570/fbgemm_gpu_genai-1.4.1-cp312-cp312-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d2a48c47c9fdd2ac9b4ecd7459dbe11831b7b12cde550ddea6a124689dd7ff42",
                "md5": "867c89194a7df204c6e4c80ac373e2ae",
                "sha256": "c30980f5a7cc365e2c83dc48418e50ecc6e708996e12117c22a9a435242854a8"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_genai-1.4.1-cp313-cp313-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "867c89194a7df204c6e4c80ac373e2ae",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": null,
            "size": 64199369,
            "upload_time": "2025-10-24T06:27:04",
            "upload_time_iso_8601": "2025-10-24T06:27:04.509166Z",
            "url": "https://files.pythonhosted.org/packages/d2/a4/8c47c9fdd2ac9b4ecd7459dbe11831b7b12cde550ddea6a124689dd7ff42/fbgemm_gpu_genai-1.4.1-cp313-cp313-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-24 06:26:50",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-genai"
}
        
Elapsed time: 3.10531s