# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-genai",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "1.1.0",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "65cea360b1f2f6df55fd8bc20b51e10706d41f76db695f68e6badfec96cc31a5",
"md5": "ae261e8db042e17a6539189bc6d7c295",
"sha256": "f97b927d06c944e0c30aac4ee164cd73faf95b99a8ad22298032f2e5c253c4fd"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai-1.1.0-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "ae261e8db042e17a6539189bc6d7c295",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 5829357,
"upload_time": "2025-01-29T19:22:36",
"upload_time_iso_8601": "2025-01-29T19:22:36.546499Z",
"url": "https://files.pythonhosted.org/packages/65/ce/a360b1f2f6df55fd8bc20b51e10706d41f76db695f68e6badfec96cc31a5/fbgemm_gpu_genai-1.1.0-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5ac4d5ee07026d561d824f3b015f6193bf9a6a3fdd68c85835a984609acd0888",
"md5": "43dca8ffee9e5158860d468dbd79e12a",
"sha256": "8500e51ef5f8a2b65b3cd19c80b9ebb41308edec1795b59d7f68b3c4736f8167"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai-1.1.0-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "43dca8ffee9e5158860d468dbd79e12a",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 5829354,
"upload_time": "2025-01-29T19:22:03",
"upload_time_iso_8601": "2025-01-29T19:22:03.950595Z",
"url": "https://files.pythonhosted.org/packages/5a/c4/d5ee07026d561d824f3b015f6193bf9a6a3fdd68c85835a984609acd0888/fbgemm_gpu_genai-1.1.0-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "db8430fbaf8629c31e10242eaf9c3e7cd1e52c9436e7d8f54605d81bbdb7e0a5",
"md5": "79b6711018b071f89f450e2c3ba252ce",
"sha256": "83928b4c3b502c8d927da6078af8cf104f321b0479827d088228fdd8cdbfbade"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai-1.1.0-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "79b6711018b071f89f450e2c3ba252ce",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 5829340,
"upload_time": "2025-01-29T19:22:08",
"upload_time_iso_8601": "2025-01-29T19:22:08.748282Z",
"url": "https://files.pythonhosted.org/packages/db/84/30fbaf8629c31e10242eaf9c3e7cd1e52c9436e7d8f54605d81bbdb7e0a5/fbgemm_gpu_genai-1.1.0-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f4e5dc999aeeeac41c9dd38dca1d0c9baaf9a155e8a7e88fc648e578f02aebd5",
"md5": "47b9388b014d76e9c42935430b52800c",
"sha256": "5329eb091aa2b9dac0c2bf0c8ea50135be7b3298790b4079f279a85c3b85d35e"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai-1.1.0-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "47b9388b014d76e9c42935430b52800c",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 5829358,
"upload_time": "2025-01-29T19:22:11",
"upload_time_iso_8601": "2025-01-29T19:22:11.150494Z",
"url": "https://files.pythonhosted.org/packages/f4/e5/dc999aeeeac41c9dd38dca1d0c9baaf9a155e8a7e88fc648e578f02aebd5/fbgemm_gpu_genai-1.1.0-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c637d60cff9186a54936c4c52816e55e322ee48f01167955738c57a5387fe4d9",
"md5": "518eb912b9d23cea54a6eaad3946950c",
"sha256": "88cd637f1b3de31b2fe8ae684fa0d5c2404bb274f63ff69cb233c206d9d37ec6"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai-1.1.0-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "518eb912b9d23cea54a6eaad3946950c",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 5829360,
"upload_time": "2025-01-29T19:22:13",
"upload_time_iso_8601": "2025-01-29T19:22:13.654287Z",
"url": "https://files.pythonhosted.org/packages/c6/37/d60cff9186a54936c4c52816e55e322ee48f01167955738c57a5387fe4d9/fbgemm_gpu_genai-1.1.0-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-29 19:22:36",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-genai"
}