# FBGEMM_GPU
[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-genai",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "1.0.0",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "56943501aef668331049a6a374cae4e7d35134b58b744072ac095679aef9be94",
"md5": "feb2cfbbe7069b485399f7aab08d8081",
"sha256": "02a08a4827c468d62a30595036045c7c61b0d3e282f5546b5fc56e03469e4d0f"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai-1.0.0-cp310-cp310-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "feb2cfbbe7069b485399f7aab08d8081",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 3531937,
"upload_time": "2024-10-18T04:17:44",
"upload_time_iso_8601": "2024-10-18T04:17:44.601498Z",
"url": "https://files.pythonhosted.org/packages/56/94/3501aef668331049a6a374cae4e7d35134b58b744072ac095679aef9be94/fbgemm_gpu_genai-1.0.0-cp310-cp310-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d3ac05ebc4f7a0b823f77a039b88b712f23db74678c7c1b1b4899924379ebe1c",
"md5": "c238da7a3e966194ea07f18d254b7f61",
"sha256": "34fdb9e93712fd30a19372e91a852d81b2b346c37388c0344bb25a7e52c7e0ab"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai-1.0.0-cp311-cp311-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "c238da7a3e966194ea07f18d254b7f61",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 3531942,
"upload_time": "2024-10-18T04:17:10",
"upload_time_iso_8601": "2024-10-18T04:17:10.714535Z",
"url": "https://files.pythonhosted.org/packages/d3/ac/05ebc4f7a0b823f77a039b88b712f23db74678c7c1b1b4899924379ebe1c/fbgemm_gpu_genai-1.0.0-cp311-cp311-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f29e80139b1805c81514030f2bcf4ebf8c6e8b4882260d50522bf6c09df7b7bc",
"md5": "5e0a6223c72d14162fb02b1b62b96b32",
"sha256": "8b1e3a0dc7f4d53fdc06efd8f9aa34e18c1e2a7d6e6f4211d37252b55a4e8903"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai-1.0.0-cp312-cp312-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "5e0a6223c72d14162fb02b1b62b96b32",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 3531944,
"upload_time": "2024-10-18T04:17:07",
"upload_time_iso_8601": "2024-10-18T04:17:07.883298Z",
"url": "https://files.pythonhosted.org/packages/f2/9e/80139b1805c81514030f2bcf4ebf8c6e8b4882260d50522bf6c09df7b7bc/fbgemm_gpu_genai-1.0.0-cp312-cp312-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1dcb59cd1fbc09e2158fec58e958472ee3e7c2199bffd13092c14bea7164f4f9",
"md5": "704d35ac0c9ba91737b49cb7c0a0ffec",
"sha256": "07e012a26350460d8a0fa3cc88e8c86bfe06790c4fbf0e090aa7be3bb1dcfdde"
},
"downloads": -1,
"filename": "fbgemm_gpu_genai-1.0.0-cp39-cp39-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "704d35ac0c9ba91737b49cb7c0a0ffec",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 3531969,
"upload_time": "2024-10-18T04:17:34",
"upload_time_iso_8601": "2024-10-18T04:17:34.193633Z",
"url": "https://files.pythonhosted.org/packages/1d/cb/59cd1fbc09e2158fec58e958472ee3e7c2199bffd13092c14bea7164f4f9/fbgemm_gpu_genai-1.0.0-cp39-cp39-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-18 04:17:44",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-genai"
}