fbgemm-gpu-nightly-genai


Namefbgemm-gpu-nightly-genai JSON
Version 2025.2.22 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2025-02-22 13:22:04
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-nightly-genai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2025.2.22",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "89eca8b5353eb5d0259901b01e86cae5d20afa2c010b1f8aaad13182832c56ca",
                "md5": "75e5cf6983cff9c9ea909cde5f751ada",
                "sha256": "89e581fdefe15f88bd76cda16572217b3ee2a1568bdc982e67ad9691e8c2a314"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2025.2.22-cp310-cp310-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "75e5cf6983cff9c9ea909cde5f751ada",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 6284088,
            "upload_time": "2025-02-22T13:22:04",
            "upload_time_iso_8601": "2025-02-22T13:22:04.934162Z",
            "url": "https://files.pythonhosted.org/packages/89/ec/a8b5353eb5d0259901b01e86cae5d20afa2c010b1f8aaad13182832c56ca/fbgemm_gpu_nightly_genai-2025.2.22-cp310-cp310-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "003f7593414412e710d2b6f1fc722f74efde071ad548d79b4b84d5726a083ccc",
                "md5": "440cc6f999bc77131f1a73a4bd076429",
                "sha256": "037b1586a6a199ef951f7f1d2c6b74304ff7136376daeff4d89a4eac545e3173"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2025.2.22-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "440cc6f999bc77131f1a73a4bd076429",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 6284096,
            "upload_time": "2025-02-22T13:22:07",
            "upload_time_iso_8601": "2025-02-22T13:22:07.734665Z",
            "url": "https://files.pythonhosted.org/packages/00/3f/7593414412e710d2b6f1fc722f74efde071ad548d79b4b84d5726a083ccc/fbgemm_gpu_nightly_genai-2025.2.22-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f7a90caa6dd42b8099cd4dec6e211e8c8708b197ef7568d6230648137e4f9dc6",
                "md5": "35b4a0e1af19af471891bbc08444b8ff",
                "sha256": "8288c657505942aa37563d4214b8e6541014e9e9653789943847c0f473e4b26e"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2025.2.22-cp312-cp312-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "35b4a0e1af19af471891bbc08444b8ff",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 6150096,
            "upload_time": "2025-02-22T13:25:25",
            "upload_time_iso_8601": "2025-02-22T13:25:25.335020Z",
            "url": "https://files.pythonhosted.org/packages/f7/a9/0caa6dd42b8099cd4dec6e211e8c8708b197ef7568d6230648137e4f9dc6/fbgemm_gpu_nightly_genai-2025.2.22-cp312-cp312-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "da3a4e4da74b1c7588cf859f8cc88c0f68e847f352879c044a45fc2d24bc423b",
                "md5": "e7905a4220e94d3d766eab0940fcd6e7",
                "sha256": "6430339feafe780785edea580218fd0aab6ceddf4c4e54bc02959e03687f2779"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2025.2.22-cp313-cp313-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "e7905a4220e94d3d766eab0940fcd6e7",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": null,
            "size": 6150093,
            "upload_time": "2025-02-22T13:25:38",
            "upload_time_iso_8601": "2025-02-22T13:25:38.570611Z",
            "url": "https://files.pythonhosted.org/packages/da/3a/4e4da74b1c7588cf859f8cc88c0f68e847f352879c044a45fc2d24bc423b/fbgemm_gpu_nightly_genai-2025.2.22-cp313-cp313-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "968a937249efb5b556a6ebae046d017f66ff02dffee78bf6df45485bab58a344",
                "md5": "a36d78824a1befa49c9a9c4461c9be5c",
                "sha256": "50ef99b55602f74f7750fc46ef9ffc106a169c747df90357129358eca640dcc0"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2025.2.22-cp39-cp39-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "a36d78824a1befa49c9a9c4461c9be5c",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 6150137,
            "upload_time": "2025-02-22T13:25:39",
            "upload_time_iso_8601": "2025-02-22T13:25:39.998390Z",
            "url": "https://files.pythonhosted.org/packages/96/8a/937249efb5b556a6ebae046d017f66ff02dffee78bf6df45485bab58a344/fbgemm_gpu_nightly_genai-2025.2.22-cp39-cp39-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-22 13:22:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-nightly-genai"
}
        
Elapsed time: 0.45256s