# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-nightly-genai",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "2025.3.9",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "9ecf1731714d1e98b93f13bef73c6083517fce94100d514d0ffa72365f6c69a2",
"md5": "7a4e9a7c6e04021af39ba0fd178e6c30",
"sha256": "dd90c515411009c34a5f616dcfb3f0de5bf0020db63823c3a0ee0ad1e20b22c5"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.3.9-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "7a4e9a7c6e04021af39ba0fd178e6c30",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 7345697,
"upload_time": "2025-03-09T13:20:41",
"upload_time_iso_8601": "2025-03-09T13:20:41.430686Z",
"url": "https://files.pythonhosted.org/packages/9e/cf/1731714d1e98b93f13bef73c6083517fce94100d514d0ffa72365f6c69a2/fbgemm_gpu_nightly_genai-2025.3.9-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "99933e6af7952a0a1a152c8ecd2136979692ea731d76c5a2d0b3cc3d9da78b67",
"md5": "9f06d784be075a2cab3604c5090f8d82",
"sha256": "c5930e43bc7772eb656b6ed0d511dc218b2c3828a10178e4ce4db24da5b4e2ea"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.3.9-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "9f06d784be075a2cab3604c5090f8d82",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 7345697,
"upload_time": "2025-03-09T13:19:47",
"upload_time_iso_8601": "2025-03-09T13:19:47.000870Z",
"url": "https://files.pythonhosted.org/packages/99/93/3e6af7952a0a1a152c8ecd2136979692ea731d76c5a2d0b3cc3d9da78b67/fbgemm_gpu_nightly_genai-2025.3.9-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1fa4693da4abf8ab650076db8bf97437f261c361f4c50a4e6be8c5fae5bbb24f",
"md5": "32df6a45d98c1a7629ae3368008e44a9",
"sha256": "5a9406946769000a1110ec76f8e1788dc6650e0b4e2d19c07e5c167aa87f37b1"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.3.9-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "32df6a45d98c1a7629ae3368008e44a9",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 7345699,
"upload_time": "2025-03-09T13:23:03",
"upload_time_iso_8601": "2025-03-09T13:23:03.242933Z",
"url": "https://files.pythonhosted.org/packages/1f/a4/693da4abf8ab650076db8bf97437f261c361f4c50a4e6be8c5fae5bbb24f/fbgemm_gpu_nightly_genai-2025.3.9-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b78de78070ddb2b3802ee4ab0f2bb75acd7c825f28a68e852243fd5e94b46c77",
"md5": "a319e29ee088194bc7b9e3337f847a31",
"sha256": "14e607cd4a2313dc604bdec051f78cdf5814793a4a2599316f147f2b4d38755e"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.3.9-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "a319e29ee088194bc7b9e3337f847a31",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 7471670,
"upload_time": "2025-03-09T13:23:13",
"upload_time_iso_8601": "2025-03-09T13:23:13.959030Z",
"url": "https://files.pythonhosted.org/packages/b7/8d/e78070ddb2b3802ee4ab0f2bb75acd7c825f28a68e852243fd5e94b46c77/fbgemm_gpu_nightly_genai-2025.3.9-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "96b3532ff904d58bb16edba42471464131f1161dc172dc8a06b5ebc88ad1450d",
"md5": "d1b095b9f2aed91b237d1c9fb4f59b83",
"sha256": "db649cbf7f1ef622c6773b0b25d95ebc2daa91fbd16798db5685273763762604"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.3.9-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "d1b095b9f2aed91b237d1c9fb4f59b83",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 7471667,
"upload_time": "2025-03-09T13:23:11",
"upload_time_iso_8601": "2025-03-09T13:23:11.536667Z",
"url": "https://files.pythonhosted.org/packages/96/b3/532ff904d58bb16edba42471464131f1161dc172dc8a06b5ebc88ad1450d/fbgemm_gpu_nightly_genai-2025.3.9-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-03-09 13:20:41",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-nightly-genai"
}