fbgemm-gpu-nightly-genai


Namefbgemm-gpu-nightly-genai JSON
Version 2025.3.9 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2025-03-09 13:20:41
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-nightly-genai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2025.3.9",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9ecf1731714d1e98b93f13bef73c6083517fce94100d514d0ffa72365f6c69a2",
                "md5": "7a4e9a7c6e04021af39ba0fd178e6c30",
                "sha256": "dd90c515411009c34a5f616dcfb3f0de5bf0020db63823c3a0ee0ad1e20b22c5"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2025.3.9-cp310-cp310-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "7a4e9a7c6e04021af39ba0fd178e6c30",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 7345697,
            "upload_time": "2025-03-09T13:20:41",
            "upload_time_iso_8601": "2025-03-09T13:20:41.430686Z",
            "url": "https://files.pythonhosted.org/packages/9e/cf/1731714d1e98b93f13bef73c6083517fce94100d514d0ffa72365f6c69a2/fbgemm_gpu_nightly_genai-2025.3.9-cp310-cp310-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "99933e6af7952a0a1a152c8ecd2136979692ea731d76c5a2d0b3cc3d9da78b67",
                "md5": "9f06d784be075a2cab3604c5090f8d82",
                "sha256": "c5930e43bc7772eb656b6ed0d511dc218b2c3828a10178e4ce4db24da5b4e2ea"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2025.3.9-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "9f06d784be075a2cab3604c5090f8d82",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 7345697,
            "upload_time": "2025-03-09T13:19:47",
            "upload_time_iso_8601": "2025-03-09T13:19:47.000870Z",
            "url": "https://files.pythonhosted.org/packages/99/93/3e6af7952a0a1a152c8ecd2136979692ea731d76c5a2d0b3cc3d9da78b67/fbgemm_gpu_nightly_genai-2025.3.9-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1fa4693da4abf8ab650076db8bf97437f261c361f4c50a4e6be8c5fae5bbb24f",
                "md5": "32df6a45d98c1a7629ae3368008e44a9",
                "sha256": "5a9406946769000a1110ec76f8e1788dc6650e0b4e2d19c07e5c167aa87f37b1"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2025.3.9-cp312-cp312-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "32df6a45d98c1a7629ae3368008e44a9",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 7345699,
            "upload_time": "2025-03-09T13:23:03",
            "upload_time_iso_8601": "2025-03-09T13:23:03.242933Z",
            "url": "https://files.pythonhosted.org/packages/1f/a4/693da4abf8ab650076db8bf97437f261c361f4c50a4e6be8c5fae5bbb24f/fbgemm_gpu_nightly_genai-2025.3.9-cp312-cp312-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b78de78070ddb2b3802ee4ab0f2bb75acd7c825f28a68e852243fd5e94b46c77",
                "md5": "a319e29ee088194bc7b9e3337f847a31",
                "sha256": "14e607cd4a2313dc604bdec051f78cdf5814793a4a2599316f147f2b4d38755e"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2025.3.9-cp313-cp313-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "a319e29ee088194bc7b9e3337f847a31",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": null,
            "size": 7471670,
            "upload_time": "2025-03-09T13:23:13",
            "upload_time_iso_8601": "2025-03-09T13:23:13.959030Z",
            "url": "https://files.pythonhosted.org/packages/b7/8d/e78070ddb2b3802ee4ab0f2bb75acd7c825f28a68e852243fd5e94b46c77/fbgemm_gpu_nightly_genai-2025.3.9-cp313-cp313-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "96b3532ff904d58bb16edba42471464131f1161dc172dc8a06b5ebc88ad1450d",
                "md5": "d1b095b9f2aed91b237d1c9fb4f59b83",
                "sha256": "db649cbf7f1ef622c6773b0b25d95ebc2daa91fbd16798db5685273763762604"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2025.3.9-cp39-cp39-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "d1b095b9f2aed91b237d1c9fb4f59b83",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 7471667,
            "upload_time": "2025-03-09T13:23:11",
            "upload_time_iso_8601": "2025-03-09T13:23:11.536667Z",
            "url": "https://files.pythonhosted.org/packages/96/b3/532ff904d58bb16edba42471464131f1161dc172dc8a06b5ebc88ad1450d/fbgemm_gpu_nightly_genai-2025.3.9-cp39-cp39-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-03-09 13:20:41",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-nightly-genai"
}
        
Elapsed time: 0.43230s