# FBGEMM_GPU
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-nightly-genai",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "2025.2.22",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "89eca8b5353eb5d0259901b01e86cae5d20afa2c010b1f8aaad13182832c56ca",
"md5": "75e5cf6983cff9c9ea909cde5f751ada",
"sha256": "89e581fdefe15f88bd76cda16572217b3ee2a1568bdc982e67ad9691e8c2a314"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.2.22-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "75e5cf6983cff9c9ea909cde5f751ada",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 6284088,
"upload_time": "2025-02-22T13:22:04",
"upload_time_iso_8601": "2025-02-22T13:22:04.934162Z",
"url": "https://files.pythonhosted.org/packages/89/ec/a8b5353eb5d0259901b01e86cae5d20afa2c010b1f8aaad13182832c56ca/fbgemm_gpu_nightly_genai-2025.2.22-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "003f7593414412e710d2b6f1fc722f74efde071ad548d79b4b84d5726a083ccc",
"md5": "440cc6f999bc77131f1a73a4bd076429",
"sha256": "037b1586a6a199ef951f7f1d2c6b74304ff7136376daeff4d89a4eac545e3173"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.2.22-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "440cc6f999bc77131f1a73a4bd076429",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 6284096,
"upload_time": "2025-02-22T13:22:07",
"upload_time_iso_8601": "2025-02-22T13:22:07.734665Z",
"url": "https://files.pythonhosted.org/packages/00/3f/7593414412e710d2b6f1fc722f74efde071ad548d79b4b84d5726a083ccc/fbgemm_gpu_nightly_genai-2025.2.22-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f7a90caa6dd42b8099cd4dec6e211e8c8708b197ef7568d6230648137e4f9dc6",
"md5": "35b4a0e1af19af471891bbc08444b8ff",
"sha256": "8288c657505942aa37563d4214b8e6541014e9e9653789943847c0f473e4b26e"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.2.22-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "35b4a0e1af19af471891bbc08444b8ff",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 6150096,
"upload_time": "2025-02-22T13:25:25",
"upload_time_iso_8601": "2025-02-22T13:25:25.335020Z",
"url": "https://files.pythonhosted.org/packages/f7/a9/0caa6dd42b8099cd4dec6e211e8c8708b197ef7568d6230648137e4f9dc6/fbgemm_gpu_nightly_genai-2025.2.22-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "da3a4e4da74b1c7588cf859f8cc88c0f68e847f352879c044a45fc2d24bc423b",
"md5": "e7905a4220e94d3d766eab0940fcd6e7",
"sha256": "6430339feafe780785edea580218fd0aab6ceddf4c4e54bc02959e03687f2779"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.2.22-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "e7905a4220e94d3d766eab0940fcd6e7",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 6150093,
"upload_time": "2025-02-22T13:25:38",
"upload_time_iso_8601": "2025-02-22T13:25:38.570611Z",
"url": "https://files.pythonhosted.org/packages/da/3a/4e4da74b1c7588cf859f8cc88c0f68e847f352879c044a45fc2d24bc423b/fbgemm_gpu_nightly_genai-2025.2.22-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "968a937249efb5b556a6ebae046d017f66ff02dffee78bf6df45485bab58a344",
"md5": "a36d78824a1befa49c9a9c4461c9be5c",
"sha256": "50ef99b55602f74f7750fc46ef9ffc106a169c747df90357129358eca640dcc0"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.2.22-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "a36d78824a1befa49c9a9c4461c9be5c",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 6150137,
"upload_time": "2025-02-22T13:25:39",
"upload_time_iso_8601": "2025-02-22T13:25:39.998390Z",
"url": "https://files.pythonhosted.org/packages/96/8a/937249efb5b556a6ebae046d017f66ff02dffee78bf6df45485bab58a344/fbgemm_gpu_nightly_genai-2025.2.22-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-22 13:22:04",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-nightly-genai"
}