# FBGEMM_GPU
[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-nightly-genai",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "2024.11.16",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "920d771c793b83394cb8b2c099fbd82f46fd80e90db84e751f304a9bb64b3134",
"md5": "be29c0fa3784a970a8820fcbe0586bf1",
"sha256": "2e3f2b03c351cd0305c3b9b018b8f5be048f5e6c52014b7f2d20e3d3f1611e84"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2024.11.16-cp310-cp310-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "be29c0fa3784a970a8820fcbe0586bf1",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 4302527,
"upload_time": "2024-11-16T13:22:56",
"upload_time_iso_8601": "2024-11-16T13:22:56.813561Z",
"url": "https://files.pythonhosted.org/packages/92/0d/771c793b83394cb8b2c099fbd82f46fd80e90db84e751f304a9bb64b3134/fbgemm_gpu_nightly_genai-2024.11.16-cp310-cp310-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "dce3b9dc7fd2c7ebf0329e3c0ed33e6119cfe870145077b5c37bc3166fb557f4",
"md5": "43a7513ca9cfce7df29afa2c2084f94d",
"sha256": "09617d6f4be1c2dca192d7a9bfef0c23d20fedf79f9aa37e1f88870c79574827"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2024.11.16-cp311-cp311-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "43a7513ca9cfce7df29afa2c2084f94d",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 4182929,
"upload_time": "2024-11-16T13:22:49",
"upload_time_iso_8601": "2024-11-16T13:22:49.511935Z",
"url": "https://files.pythonhosted.org/packages/dc/e3/b9dc7fd2c7ebf0329e3c0ed33e6119cfe870145077b5c37bc3166fb557f4/fbgemm_gpu_nightly_genai-2024.11.16-cp311-cp311-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "efb3b419e425de03688eab51225a75f801af6a503eb06428e5d1a9824f489575",
"md5": "3d6adbd80186e3dd6019796aa12026b0",
"sha256": "c39b103ed848bf7b9c41696ea97de303d70379fbc6522d64aa566646859c274a"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2024.11.16-cp312-cp312-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "3d6adbd80186e3dd6019796aa12026b0",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 4302526,
"upload_time": "2024-11-16T13:23:23",
"upload_time_iso_8601": "2024-11-16T13:23:23.902170Z",
"url": "https://files.pythonhosted.org/packages/ef/b3/b419e425de03688eab51225a75f801af6a503eb06428e5d1a9824f489575/fbgemm_gpu_nightly_genai-2024.11.16-cp312-cp312-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "af033038e5dd7a9fad1f70146704be27f1bee384aa297ebddbb5e7c9a099c55b",
"md5": "89741263c8df0353566ad8093ff02094",
"sha256": "95dc968354ad59850165f5e4d81b25b021b2d40b0581c002c09b27d51c1a5ee0"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2024.11.16-cp39-cp39-manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "89741263c8df0353566ad8093ff02094",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 4302513,
"upload_time": "2024-11-16T13:26:18",
"upload_time_iso_8601": "2024-11-16T13:26:18.501055Z",
"url": "https://files.pythonhosted.org/packages/af/03/3038e5dd7a9fad1f70146704be27f1bee384aa297ebddbb5e7c9a099c55b/fbgemm_gpu_nightly_genai-2024.11.16-cp39-cp39-manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-16 13:22:56",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-nightly-genai"
}