# FBGEMM_GPU
[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)
FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference. The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.
FBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.
See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.
## Join the FBGEMM_GPU Community
For questions, support, news updates, or feature requests, please feel free to:
* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)
For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.
## License
FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/pytorch/fbgemm",
"name": "fbgemm-gpu-nightly-genai",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
"author": "FBGEMM Team",
"author_email": "packages@pytorch.org",
"download_url": null,
"platform": null,
"description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference. The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.4 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
"bugtrack_url": null,
"license": "BSD-3",
"summary": null,
"version": "2025.1.18",
"project_urls": {
"Homepage": "https://github.com/pytorch/fbgemm"
},
"split_keywords": [
"pytorch",
" recommendation models",
" high performance computing",
" gpu",
" cuda"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7a28de8c7c4ad536fc1ec28f90e1ba96580aebcae48895df82deb33ac9f658a7",
"md5": "fdad82d94c396787d93fb99b5e9078d2",
"sha256": "f60f40b9df61450d1307fe4f43846732c4d9d43d6a0f19627442b7ce4f4c3d5a"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.1.18-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "fdad82d94c396787d93fb99b5e9078d2",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": null,
"size": 5939224,
"upload_time": "2025-01-18T13:20:57",
"upload_time_iso_8601": "2025-01-18T13:20:57.499386Z",
"url": "https://files.pythonhosted.org/packages/7a/28/de8c7c4ad536fc1ec28f90e1ba96580aebcae48895df82deb33ac9f658a7/fbgemm_gpu_nightly_genai-2025.1.18-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "429359934b23cb56d1f5d5c80d1461367abb8877268a8c7d6550bb27261d8c07",
"md5": "617f1dd130b1b39e9990c903a99e0ac8",
"sha256": "011bfa754671596683aa400c9f9907dd79e267a2530c35ba241e0fe7202b4e45"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.1.18-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "617f1dd130b1b39e9990c903a99e0ac8",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": null,
"size": 5810614,
"upload_time": "2025-01-18T13:20:53",
"upload_time_iso_8601": "2025-01-18T13:20:53.322810Z",
"url": "https://files.pythonhosted.org/packages/42/93/59934b23cb56d1f5d5c80d1461367abb8877268a8c7d6550bb27261d8c07/fbgemm_gpu_nightly_genai-2025.1.18-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4def952cf764672d3768e3176e33404f28547b9717713d69ce8ba445b73dfd6c",
"md5": "2081129ebed89ec9cb00502824f711b0",
"sha256": "73d96018c87f4cafb7f505cc37436057b279c8c53fe1581154774c10fcf5da0d"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.1.18-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "2081129ebed89ec9cb00502824f711b0",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": null,
"size": 5810611,
"upload_time": "2025-01-18T13:22:14",
"upload_time_iso_8601": "2025-01-18T13:22:14.318893Z",
"url": "https://files.pythonhosted.org/packages/4d/ef/952cf764672d3768e3176e33404f28547b9717713d69ce8ba445b73dfd6c/fbgemm_gpu_nightly_genai-2025.1.18-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0cba299a2aa3d9c346b077990ca4ff6b0317c9a6b1cf3068de42d80e2558598e",
"md5": "c0e0a6673eb5b9959ddcc5f0f0be8127",
"sha256": "c56adc69464551a9800631fe3d2e714ccfc13b4e566a45037f27c1d056b20551"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.1.18-cp313-cp313-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "c0e0a6673eb5b9959ddcc5f0f0be8127",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": null,
"size": 5810610,
"upload_time": "2025-01-18T13:24:03",
"upload_time_iso_8601": "2025-01-18T13:24:03.936073Z",
"url": "https://files.pythonhosted.org/packages/0c/ba/299a2aa3d9c346b077990ca4ff6b0317c9a6b1cf3068de42d80e2558598e/fbgemm_gpu_nightly_genai-2025.1.18-cp313-cp313-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1bf8f62e7e2d2720fdfb05b38adec7545da50fafe129fe510b445e83aff1f1ac",
"md5": "0b1865d46ea4f699c308957aeb75501f",
"sha256": "81a669b7c53fc35e4df85663639161601a4b75619718120fc7e7ee0a6c1d0f09"
},
"downloads": -1,
"filename": "fbgemm_gpu_nightly_genai-2025.1.18-cp39-cp39-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "0b1865d46ea4f699c308957aeb75501f",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": null,
"size": 5810566,
"upload_time": "2025-01-18T13:24:01",
"upload_time_iso_8601": "2025-01-18T13:24:01.320078Z",
"url": "https://files.pythonhosted.org/packages/1b/f8/f62e7e2d2720fdfb05b38adec7545da50fafe129fe510b445e83aff1f1ac/fbgemm_gpu_nightly_genai-2025.1.18-cp39-cp39-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-18 13:20:57",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "pytorch",
"github_project": "fbgemm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fbgemm-gpu-nightly-genai"
}