fbgemm-gpu-nightly-genai


Namefbgemm-gpu-nightly-genai JSON
Version 2024.11.16 PyPI version JSON
download
home_pagehttps://github.com/pytorch/fbgemm
SummaryNone
upload_time2024-11-16 13:22:56
maintainerNone
docs_urlNone
authorFBGEMM Team
requires_pythonNone
licenseBSD-3
keywords pytorch recommendation models high performance computing gpu cuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FBGEMM_GPU

[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)
[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)
[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)

FBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance
PyTorch GPU operator libraries for training and inference.  The library provides
efficient table batched embedding bag, data layout transformation, and
quantization supports.

FBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch
packages (2.1+) that are built against those CUDA versions.

See the full [Documentation](https://pytorch.org/FBGEMM) for more information
on building, installing, and developing with FBGEMM_GPU, as well as the most
up-to-date support matrix for this library.


## Join the FBGEMM_GPU Community

For questions, support, news updates, or feature requests, please feel free to:

* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)
* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)
* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)

For contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for
ways to help out.


## License

FBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/fbgemm",
    "name": "fbgemm-gpu-nightly-genai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "PyTorch, Recommendation Models, High Performance Computing, GPU, CUDA",
    "author": "FBGEMM Team",
    "author_email": "packages@pytorch.org",
    "download_url": null,
    "platform": null,
    "description": "# FBGEMM_GPU\n\n[![FBGEMM_GPU-CPU CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cpu.yml)\n[![FBGEMM_GPU-CUDA CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_cuda.yml)\n[![FBGEMM_GPU-ROCm CI](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml/badge.svg)](https://github.com/pytorch/FBGEMM/actions/workflows/fbgemm_gpu_ci_rocm.yml)\n\nFBGEMM_GPU (FBGEMM GPU Kernels Library) is a collection of high-performance\nPyTorch GPU operator libraries for training and inference.  The library provides\nefficient table batched embedding bag, data layout transformation, and\nquantization supports.\n\nFBGEMM_GPU is currently tested with CUDA 12.1 and 11.8 in CI, and with PyTorch\npackages (2.1+) that are built against those CUDA versions.\n\nSee the full [Documentation](https://pytorch.org/FBGEMM) for more information\non building, installing, and developing with FBGEMM_GPU, as well as the most\nup-to-date support matrix for this library.\n\n\n## Join the FBGEMM_GPU Community\n\nFor questions, support, news updates, or feature requests, please feel free to:\n\n* File a ticket in [GitHub Issues](https://github.com/pytorch/FBGEMM/issues)\n* Post a discussion in [GitHub Discussions](https://github.com/pytorch/FBGEMM/discussions)\n* Reach out to us on the `#fbgemm` channel in [PyTorch Slack](https://bit.ly/ptslack)\n\nFor contributions, please see the [`CONTRIBUTING`](../CONTRIBUTING.md) file for\nways to help out.\n\n\n## License\n\nFBGEMM_GPU is BSD licensed, as found in the [`LICENSE`](../LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": null,
    "version": "2024.11.16",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/fbgemm"
    },
    "split_keywords": [
        "pytorch",
        " recommendation models",
        " high performance computing",
        " gpu",
        " cuda"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "920d771c793b83394cb8b2c099fbd82f46fd80e90db84e751f304a9bb64b3134",
                "md5": "be29c0fa3784a970a8820fcbe0586bf1",
                "sha256": "2e3f2b03c351cd0305c3b9b018b8f5be048f5e6c52014b7f2d20e3d3f1611e84"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2024.11.16-cp310-cp310-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "be29c0fa3784a970a8820fcbe0586bf1",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": null,
            "size": 4302527,
            "upload_time": "2024-11-16T13:22:56",
            "upload_time_iso_8601": "2024-11-16T13:22:56.813561Z",
            "url": "https://files.pythonhosted.org/packages/92/0d/771c793b83394cb8b2c099fbd82f46fd80e90db84e751f304a9bb64b3134/fbgemm_gpu_nightly_genai-2024.11.16-cp310-cp310-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dce3b9dc7fd2c7ebf0329e3c0ed33e6119cfe870145077b5c37bc3166fb557f4",
                "md5": "43a7513ca9cfce7df29afa2c2084f94d",
                "sha256": "09617d6f4be1c2dca192d7a9bfef0c23d20fedf79f9aa37e1f88870c79574827"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2024.11.16-cp311-cp311-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "43a7513ca9cfce7df29afa2c2084f94d",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": null,
            "size": 4182929,
            "upload_time": "2024-11-16T13:22:49",
            "upload_time_iso_8601": "2024-11-16T13:22:49.511935Z",
            "url": "https://files.pythonhosted.org/packages/dc/e3/b9dc7fd2c7ebf0329e3c0ed33e6119cfe870145077b5c37bc3166fb557f4/fbgemm_gpu_nightly_genai-2024.11.16-cp311-cp311-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "efb3b419e425de03688eab51225a75f801af6a503eb06428e5d1a9824f489575",
                "md5": "3d6adbd80186e3dd6019796aa12026b0",
                "sha256": "c39b103ed848bf7b9c41696ea97de303d70379fbc6522d64aa566646859c274a"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2024.11.16-cp312-cp312-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "3d6adbd80186e3dd6019796aa12026b0",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": null,
            "size": 4302526,
            "upload_time": "2024-11-16T13:23:23",
            "upload_time_iso_8601": "2024-11-16T13:23:23.902170Z",
            "url": "https://files.pythonhosted.org/packages/ef/b3/b419e425de03688eab51225a75f801af6a503eb06428e5d1a9824f489575/fbgemm_gpu_nightly_genai-2024.11.16-cp312-cp312-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "af033038e5dd7a9fad1f70146704be27f1bee384aa297ebddbb5e7c9a099c55b",
                "md5": "89741263c8df0353566ad8093ff02094",
                "sha256": "95dc968354ad59850165f5e4d81b25b021b2d40b0581c002c09b27d51c1a5ee0"
            },
            "downloads": -1,
            "filename": "fbgemm_gpu_nightly_genai-2024.11.16-cp39-cp39-manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "89741263c8df0353566ad8093ff02094",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": null,
            "size": 4302513,
            "upload_time": "2024-11-16T13:26:18",
            "upload_time_iso_8601": "2024-11-16T13:26:18.501055Z",
            "url": "https://files.pythonhosted.org/packages/af/03/3038e5dd7a9fad1f70146704be27f1bee384aa297ebddbb5e7c9a099c55b/fbgemm_gpu_nightly_genai-2024.11.16-cp39-cp39-manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-16 13:22:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "fbgemm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fbgemm-gpu-nightly-genai"
}
        
Elapsed time: 0.61656s