# FeaSc
FeaSc 是一个用于单细胞 RNA 测序数据分析的工具包,支持单样本与多样本数据的降维,通路活性,细胞因子信号活性。
## 🔧 安装方法
### 方法一:直接安装(推荐)
```bash
pip install FeaSc
```
### 方法二:安装可编辑版本
```bash
cd /path/to/FeaSc
pip install -e .
```
Raw data
{
"_id": null,
"home_page": null,
"name": "feasc",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.12",
"maintainer_email": null,
"keywords": "single-cell, bioinformatics, feature-analysis",
"author": null,
"author_email": "gaomengqi <gaomengqi2022@sibcb.ac.cn>",
"download_url": "https://files.pythonhosted.org/packages/7d/0c/d0c9b1f7f63b6d48fc893126efa7890529f5074df7838ca86373d760134d/feasc-1.1.4.tar.gz",
"platform": null,
"description": "# FeaSc\r\n\r\nFeaSc \u662f\u4e00\u4e2a\u7528\u4e8e\u5355\u7ec6\u80de RNA \u6d4b\u5e8f\u6570\u636e\u5206\u6790\u7684\u5de5\u5177\u5305\uff0c\u652f\u6301\u5355\u6837\u672c\u4e0e\u591a\u6837\u672c\u6570\u636e\u7684\u964d\u7ef4\uff0c\u901a\u8def\u6d3b\u6027\uff0c\u7ec6\u80de\u56e0\u5b50\u4fe1\u53f7\u6d3b\u6027\u3002\r\n\r\n## \ud83d\udd27 \u5b89\u88c5\u65b9\u6cd5\r\n\r\n### \u65b9\u6cd5\u4e00\uff1a\u76f4\u63a5\u5b89\u88c5\uff08\u63a8\u8350\uff09\r\n\r\n```bash\r\n\r\npip install FeaSc\r\n```\r\n\r\n### \u65b9\u6cd5\u4e8c\uff1a\u5b89\u88c5\u53ef\u7f16\u8f91\u7248\u672c\r\n\r\n```bash\r\n\r\ncd /path/to/FeaSc\r\npip install -e .\r\n```\r\n",
"bugtrack_url": null,
"license": null,
"summary": "Framework of Analysis for Single Cells",
"version": "1.1.4",
"project_urls": {
"Homepage": "https://gitee.com/angelina-cheng",
"Repository": "https://gitee.com/angelina-cheng/fea-sc"
},
"split_keywords": [
"single-cell",
" bioinformatics",
" feature-analysis"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "d1bb2ebdf3e4bf9bc91ec494a9fe8b69b3aad7def976167f099627bc2ebb560f",
"md5": "5288a41e4e70b4ca1971260f91a52cb1",
"sha256": "9f76a4aa3f27f0e44b0a5255877e1b15a12323a2f2c449be8c4aa3aa76b52261"
},
"downloads": -1,
"filename": "feasc-1.1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5288a41e4e70b4ca1971260f91a52cb1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.12",
"size": 36120,
"upload_time": "2025-07-16T12:27:27",
"upload_time_iso_8601": "2025-07-16T12:27:27.928991Z",
"url": "https://files.pythonhosted.org/packages/d1/bb/2ebdf3e4bf9bc91ec494a9fe8b69b3aad7def976167f099627bc2ebb560f/feasc-1.1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7d0cd0c9b1f7f63b6d48fc893126efa7890529f5074df7838ca86373d760134d",
"md5": "c039703cdf8e460fda8e9cd31e407a7f",
"sha256": "c6b2df32ee297c760cc62d7d449ed960b99a989a517de5cb015e0316b48b13c7"
},
"downloads": -1,
"filename": "feasc-1.1.4.tar.gz",
"has_sig": false,
"md5_digest": "c039703cdf8e460fda8e9cd31e407a7f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.12",
"size": 30520,
"upload_time": "2025-07-16T12:27:29",
"upload_time_iso_8601": "2025-07-16T12:27:29.365229Z",
"url": "https://files.pythonhosted.org/packages/7d/0c/d0c9b1f7f63b6d48fc893126efa7890529f5074df7838ca86373d760134d/feasc-1.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-16 12:27:29",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "feasc"
}