featboostx


Namefeatboostx JSON
Version 0.1.0rc2 PyPI version JSON
download
home_pagehttps://github.com/O-T-O-Z/FeatBoost-X
SummaryA Python package for the FeatBoost-X feature selection algorithm
upload_time2025-01-10 13:26:37
maintainerNone
docs_urlNone
authorÖmer Tarik Özyilmaz & Ahmad Alsahaf
requires_python<4,>=3.10
licenseNone
keywords feature selection gradient boosting featboost-x
VCS
bugtrack_url
requirements numpy shap lifelines pytest xgboost scipy
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FeatBoost-X
Python implementation of FeatBoost-X. See the [paper]() for details.


## Usage
```shell
pip install featboostx
```

### Example
```python
from featboostx import FeatBoostClassifier

clf = FeatBoostClassifier()
clf.fit(X, y)
print(clf.selected_subset_)
```
For a more detailed example, see the [classification example](examples/example_classification.py) or the 
[regression example](examples/example_regression.py).

## Feature selection methods
FeatBoost-X is available classification, regression, and survival problems.
- Classification supports the objectives accuracy (`acc`) and the F1-score (`f1`) through the `FeatBoostClassifier`-class. These can be optimized through the `softmax` or `adaboost` objective.
This implementation originates from the Python implementation of the [original paper](https://github.com/amjams/FeatBoost).
- Regression supports the `mae` objective through the `FeatBoostRegressor`-class and can be optimized through `adaptive` boosting.
- Survival supports the `c_index` objective through the `FeatBoostRegressor`-class and can be optimized through `adaptive` boosting.


# Illustration of FeatBoost-X
![Figure 1](images/Figure_1.png)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/O-T-O-Z/FeatBoost-X",
    "name": "featboostx",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4,>=3.10",
    "maintainer_email": null,
    "keywords": "Feature Selection, Gradient Boosting, FeatBoost-X",
    "author": "\u00d6mer Tarik \u00d6zyilmaz & Ahmad Alsahaf",
    "author_email": "o.t.ozyilmaz@umcg.nl",
    "download_url": "https://files.pythonhosted.org/packages/c8/fc/a4bd50e2563d15e6938a1eb8ce4dfad00b41e8127eda16f8ad949ec58040/featboostx-0.1.0rc2.tar.gz",
    "platform": null,
    "description": "# FeatBoost-X\nPython implementation of FeatBoost-X. See the [paper]() for details.\n\n\n## Usage\n```shell\npip install featboostx\n```\n\n### Example\n```python\nfrom featboostx import FeatBoostClassifier\n\nclf = FeatBoostClassifier()\nclf.fit(X, y)\nprint(clf.selected_subset_)\n```\nFor a more detailed example, see the [classification example](examples/example_classification.py) or the \n[regression example](examples/example_regression.py).\n\n## Feature selection methods\nFeatBoost-X is available classification, regression, and survival problems.\n- Classification supports the objectives accuracy (`acc`) and the F1-score (`f1`) through the `FeatBoostClassifier`-class. These can be optimized through the `softmax` or `adaboost` objective.\nThis implementation originates from the Python implementation of the [original paper](https://github.com/amjams/FeatBoost).\n- Regression supports the `mae` objective through the `FeatBoostRegressor`-class and can be optimized through `adaptive` boosting.\n- Survival supports the `c_index` objective through the `FeatBoostRegressor`-class and can be optimized through `adaptive` boosting.\n\n\n# Illustration of FeatBoost-X\n![Figure 1](images/Figure_1.png)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Python package for the FeatBoost-X feature selection algorithm",
    "version": "0.1.0rc2",
    "project_urls": {
        "Homepage": "https://github.com/O-T-O-Z/FeatBoost-X"
    },
    "split_keywords": [
        "feature selection",
        " gradient boosting",
        " featboost-x"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c8a6fb1441db33f17edd762a33d0c55e6c83952394853ebd7575395908e84b6a",
                "md5": "36b69b6fde68f5f49925cf318d45b835",
                "sha256": "f037834245e50f6a5dd7be3c12dd75e1078b4940bca63cd8b6a11d05fedfc05f"
            },
            "downloads": -1,
            "filename": "featboostx-0.1.0rc2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "36b69b6fde68f5f49925cf318d45b835",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4,>=3.10",
            "size": 12842,
            "upload_time": "2025-01-10T13:26:30",
            "upload_time_iso_8601": "2025-01-10T13:26:30.607459Z",
            "url": "https://files.pythonhosted.org/packages/c8/a6/fb1441db33f17edd762a33d0c55e6c83952394853ebd7575395908e84b6a/featboostx-0.1.0rc2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c8fca4bd50e2563d15e6938a1eb8ce4dfad00b41e8127eda16f8ad949ec58040",
                "md5": "38c0b4521872441d84a1949425577bf1",
                "sha256": "95e24390630baed299ead5b0c7bb2f6e4ad3de7d5b5b2c67b5a5f5bcabe9835e"
            },
            "downloads": -1,
            "filename": "featboostx-0.1.0rc2.tar.gz",
            "has_sig": false,
            "md5_digest": "38c0b4521872441d84a1949425577bf1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4,>=3.10",
            "size": 366150,
            "upload_time": "2025-01-10T13:26:37",
            "upload_time_iso_8601": "2025-01-10T13:26:37.169839Z",
            "url": "https://files.pythonhosted.org/packages/c8/fc/a4bd50e2563d15e6938a1eb8ce4dfad00b41e8127eda16f8ad949ec58040/featboostx-0.1.0rc2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-10 13:26:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "O-T-O-Z",
    "github_project": "FeatBoost-X",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.26.4"
                ]
            ]
        },
        {
            "name": "shap",
            "specs": [
                [
                    "==",
                    "0.45.0"
                ]
            ]
        },
        {
            "name": "lifelines",
            "specs": [
                [
                    "==",
                    "0.28.0"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": [
                [
                    "==",
                    "8.3.3"
                ]
            ]
        },
        {
            "name": "xgboost",
            "specs": [
                [
                    "==",
                    "2.0.3"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.13"
                ]
            ]
        }
    ],
    "lcname": "featboostx"
}
        
Elapsed time: 0.58584s