framework-reproducibility


Nameframework-reproducibility JSON
Version 0.5.0 PyPI version JSON
download
home_pagehttps://github.com/NVIDIA/framework-reproducibility
SummaryProviding reproducibility in deep learning frameworks
upload_time2023-06-22 22:58:38
maintainer
docs_urlNone
authorNVIDIA
requires_python
licenseApache 2.0
keywords framework tensorflow gpu deep-learning determinism reproducibility pytorch seed seeder noise noise-reduction variance-reduction atomics ngc gpu-determinism deterministic-ops frameworks gpu-support d9m r13y fwr13y
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            This package provides patches and tools related to determinism
(bit-accurate, run-to-run reproducibility) in deep learning frameworks, with a
focus on determinism when running on GPUs, and a tool (Seeder) for reducing
variance in deep learning frameworks.

For further information, see the documentation in the associated open-source
repository: [GitHub/NVIDIA/framework-reproducibility][1]

[1]: https://github.com/NVIDIA/framework-reproducibility
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/NVIDIA/framework-reproducibility",
    "name": "framework-reproducibility",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "framework tensorflow gpu deep-learning determinism reproducibility pytorch seed seeder noise noise-reduction variance-reduction atomics ngc gpu-determinism deterministic-ops frameworks gpu-support d9m r13y fwr13y",
    "author": "NVIDIA",
    "author_email": "duncan@nvidia.com",
    "download_url": "https://files.pythonhosted.org/packages/af/58/03759a430b36ff7ef0693a086d9b6c0f92cf0fc43611bcbce10384735e51/framework-reproducibility-0.5.0.tar.gz",
    "platform": "TensorFlow",
    "description": "This package provides patches and tools related to determinism\n(bit-accurate, run-to-run reproducibility) in deep learning frameworks, with a\nfocus on determinism when running on GPUs, and a tool (Seeder) for reducing\nvariance in deep learning frameworks.\n\nFor further information, see the documentation in the associated open-source\nrepository: [GitHub/NVIDIA/framework-reproducibility][1]\n\n[1]: https://github.com/NVIDIA/framework-reproducibility",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Providing reproducibility in deep learning frameworks",
    "version": "0.5.0",
    "project_urls": {
        "Homepage": "https://github.com/NVIDIA/framework-reproducibility"
    },
    "split_keywords": [
        "framework",
        "tensorflow",
        "gpu",
        "deep-learning",
        "determinism",
        "reproducibility",
        "pytorch",
        "seed",
        "seeder",
        "noise",
        "noise-reduction",
        "variance-reduction",
        "atomics",
        "ngc",
        "gpu-determinism",
        "deterministic-ops",
        "frameworks",
        "gpu-support",
        "d9m",
        "r13y",
        "fwr13y"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "17107390ea54c10d6e0250d980f2b07aec1571a97f315327102eeeb936c22ed9",
                "md5": "741ddeefaafcc9f465f8e41bb833d292",
                "sha256": "591b5dcc61e805d5ef934ba0c1dd376f51290096d4b9f9f56fd1c01c262a8f66"
            },
            "downloads": -1,
            "filename": "framework_reproducibility-0.5.0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "741ddeefaafcc9f465f8e41bb833d292",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 18301,
            "upload_time": "2023-06-22T22:58:59",
            "upload_time_iso_8601": "2023-06-22T22:58:59.340710Z",
            "url": "https://files.pythonhosted.org/packages/17/10/7390ea54c10d6e0250d980f2b07aec1571a97f315327102eeeb936c22ed9/framework_reproducibility-0.5.0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "af5803759a430b36ff7ef0693a086d9b6c0f92cf0fc43611bcbce10384735e51",
                "md5": "c1b9aed0a86e08f0abfdc9c3ffaf043c",
                "sha256": "0c62f7b42be2af1cdde9cc8a6b32a6441235fd0c1c31ad057bbf2e868cfa1a09"
            },
            "downloads": -1,
            "filename": "framework-reproducibility-0.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "c1b9aed0a86e08f0abfdc9c3ffaf043c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 8079,
            "upload_time": "2023-06-22T22:58:38",
            "upload_time_iso_8601": "2023-06-22T22:58:38.816725Z",
            "url": "https://files.pythonhosted.org/packages/af/58/03759a430b36ff7ef0693a086d9b6c0f92cf0fc43611bcbce10384735e51/framework-reproducibility-0.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-22 22:58:38",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NVIDIA",
    "github_project": "framework-reproducibility",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "framework-reproducibility"
}
        
Elapsed time: 0.30656s