# fuzzy-c-means
![GitHub](https://img.shields.io/github/license/omadson/fuzzy-c-means.svg)
[![PyPI](https://img.shields.io/pypi/v/fuzzy-c-means.svg)](http://pypi.org/project/fuzzy-c-means/)
[![Documentation Status](https://readthedocs.org/projects/fuzzy-c-means/badge/?version=latest)](https://fuzzy-c-means.readthedocs.io/en/latest/?badge=latest)
[![GitHub last commit](https://img.shields.io/github/last-commit/omadson/fuzzy-c-means.svg)](https://github.com/omadson/fuzzy-c-means/commit/master)
[![Downloads](https://pepy.tech/badge/fuzzy-c-means)](https://pepy.tech/project/fuzzy-c-means)
[![DOI](https://zenodo.org/badge/186457481.svg)](https://zenodo.org/badge/latestdoi/186457481)
**[Documentation](https://fuzzy-c-means.readthedocs.io/)** | **[Changelog](https://fuzzy-c-means.readthedocs.io/en/latest/CHANGELOG/)** | **[Citation](https://fuzzy-c-means.readthedocs.io/en/latest/citation/)**
`fuzzy-c-means` is a Python module implementing the [Fuzzy C-means][1] clustering algorithm.
## installation
the `fuzzy-c-means` package is available in [PyPI](https://pypi.org/project/fuzzy-c-means/). to install, simply type the following command:
```
pip install fuzzy-c-means
```
## citation
if you use `fuzzy-c-means` package in your paper, please cite it in your publication.
```
@software{dias2019fuzzy,
author = {Madson Luiz Dantas Dias},
title = {fuzzy-c-means: An implementation of Fuzzy $C$-means clustering algorithm.},
month = may,
year = 2019,
publisher = {Zenodo},
doi = {10.5281/zenodo.3066222},
url = {https://git.io/fuzzy-c-means}
}
```
<!-- ### citations
- [Gene-Based Clustering Algorithms: Comparison Between Denclue, Fuzzy-C, and BIRCH](https://doi.org/10.1177/1177932220909851)
- [Analisis Data Log IDS Snort dengan Algoritma Clustering Fuzzy C-Means](https://doi.org/10.24843/MITE.2020.v19i01.P14)
- [Comparative Analysis between the k-means and Fuzzy c-means Algorithms to Detect UDP Flood DDoS Attack on a SDN/NFV Environment](https://doi.org/10.5220/0010176201050112)
- [Mixture-of-Experts Variational Autoencoder for Clustering and Generating from Similarity-Based Representations on Single Cell Data](https://arxiv.org/abs/1910.07763)
- [Fuzzy Clustering: an Application to Distributional Reinforcement Learning](https://doi.org/10.34726/hss.2021.86783)
- [Fuzzy Clustering with Similarity Queries](https://arxiv.org/pdf/2106.02212.pdf)
- [Robust Representation and Efficient Feature Selection Allows for Effective Clustering of SARS-CoV-2 Variants](https://arxiv.org/abs/2110.09622)
- [Unsupervised clustering-based spectral analysis of bio-dyed textile samples](http://urn.fi/urn:nbn:fi:uef-20211291) -->
## contributing and support
this project is open for contributions. here are some of the ways for you to contribute:
- bug reports/fix
- features requests
- use-case demonstrations
please open an [issue](https://github.com/omadson/fuzzy-c-means/issues) with enough information for us to reproduce your problem. A [minimal, reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) would be very helpful.
to make a contribution, just fork this repository, push the changes in your fork, open up an issue, and make a pull request!
<!-- ## contributors
- [Madson Dias](https://github.com/omadson)
- [Dirk Nachbar](https://github.com/dirknbr)
- [Alberth FlorĂȘncio](https://github.com/zealberth) -->
[1]: https://doi.org/10.1016/0098-3004(84)90020-7
[2]: http://scikit-learn.org/
Raw data
{
"_id": null,
"home_page": "https://github.com/omadson/fuzzy-c-means",
"name": "fuzzy-c-means",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9,<4.0",
"maintainer_email": "",
"keywords": "machine-learning,data-science,fuzzy-c-means,clustering",
"author": "Madson Dias",
"author_email": "madsonddias@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/9e/a1/fe18a9cb3a65fe0fbe2e96ec6acf0753a09fe4d24868f42530f7db5df22d/fuzzy_c_means-1.7.0.tar.gz",
"platform": null,
"description": "# fuzzy-c-means\n\n![GitHub](https://img.shields.io/github/license/omadson/fuzzy-c-means.svg)\n[![PyPI](https://img.shields.io/pypi/v/fuzzy-c-means.svg)](http://pypi.org/project/fuzzy-c-means/)\n[![Documentation Status](https://readthedocs.org/projects/fuzzy-c-means/badge/?version=latest)](https://fuzzy-c-means.readthedocs.io/en/latest/?badge=latest)\n[![GitHub last commit](https://img.shields.io/github/last-commit/omadson/fuzzy-c-means.svg)](https://github.com/omadson/fuzzy-c-means/commit/master)\n[![Downloads](https://pepy.tech/badge/fuzzy-c-means)](https://pepy.tech/project/fuzzy-c-means)\n[![DOI](https://zenodo.org/badge/186457481.svg)](https://zenodo.org/badge/latestdoi/186457481)\n\n\n**[Documentation](https://fuzzy-c-means.readthedocs.io/)** | **[Changelog](https://fuzzy-c-means.readthedocs.io/en/latest/CHANGELOG/)** | **[Citation](https://fuzzy-c-means.readthedocs.io/en/latest/citation/)**\n\n\n\n`fuzzy-c-means` is a Python module implementing the [Fuzzy C-means][1] clustering algorithm.\n\n## installation\nthe `fuzzy-c-means` package is available in [PyPI](https://pypi.org/project/fuzzy-c-means/). to install, simply type the following command:\n```\npip install fuzzy-c-means\n```\n## citation\nif you use `fuzzy-c-means` package in your paper, please cite it in your publication.\n```\n@software{dias2019fuzzy,\n author = {Madson Luiz Dantas Dias},\n title = {fuzzy-c-means: An implementation of Fuzzy $C$-means clustering algorithm.},\n month = may,\n year = 2019,\n publisher = {Zenodo},\n doi = {10.5281/zenodo.3066222},\n url = {https://git.io/fuzzy-c-means}\n}\n```\n\n<!-- ### citations\n - [Gene-Based Clustering Algorithms: Comparison Between Denclue, Fuzzy-C, and BIRCH](https://doi.org/10.1177/1177932220909851)\n - [Analisis Data Log IDS Snort dengan Algoritma Clustering Fuzzy C-Means](https://doi.org/10.24843/MITE.2020.v19i01.P14)\n - [Comparative Analysis between the k-means and Fuzzy c-means Algorithms to Detect UDP Flood DDoS Attack on a SDN/NFV Environment](https://doi.org/10.5220/0010176201050112)\n - [Mixture-of-Experts Variational Autoencoder for Clustering and Generating from Similarity-Based Representations on Single Cell Data](https://arxiv.org/abs/1910.07763)\n - [Fuzzy Clustering: an Application to Distributional Reinforcement Learning](https://doi.org/10.34726/hss.2021.86783)\n - [Fuzzy Clustering with Similarity Queries](https://arxiv.org/pdf/2106.02212.pdf)\n - [Robust Representation and Efficient Feature Selection Allows for Effective Clustering of SARS-CoV-2 Variants](https://arxiv.org/abs/2110.09622)\n - [Unsupervised clustering-based spectral analysis of bio-dyed textile samples](http://urn.fi/urn:nbn:fi:uef-20211291) -->\n\n\n## contributing and support\n\nthis project is open for contributions. here are some of the ways for you to contribute:\n - bug reports/fix\n - features requests\n - use-case demonstrations\n\nplease open an [issue](https://github.com/omadson/fuzzy-c-means/issues) with enough information for us to reproduce your problem. A [minimal, reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) would be very helpful.\n\nto make a contribution, just fork this repository, push the changes in your fork, open up an issue, and make a pull request!\n\n<!-- ## contributors\n - [Madson Dias](https://github.com/omadson)\n - [Dirk Nachbar](https://github.com/dirknbr)\n - [Alberth Flor\u00eancio](https://github.com/zealberth) -->\n\n[1]: https://doi.org/10.1016/0098-3004(84)90020-7\n[2]: http://scikit-learn.org/\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A simple python implementation of Fuzzy C-means algorithm.",
"version": "1.7.0",
"split_keywords": [
"machine-learning",
"data-science",
"fuzzy-c-means",
"clustering"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "a1f242922e57210ed73b7c547d3daf60",
"sha256": "40b776b549f56cd9758776638fde07b2d839899f1d2e8fcc71d74d82de46af5e"
},
"downloads": -1,
"filename": "fuzzy_c_means-1.7.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a1f242922e57210ed73b7c547d3daf60",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9,<4.0",
"size": 9047,
"upload_time": "2022-12-09T15:04:55",
"upload_time_iso_8601": "2022-12-09T15:04:55.453252Z",
"url": "https://files.pythonhosted.org/packages/7f/38/3376b99d66a4d47810ac650b0d7a21a08caa021a691bc809be3d46f9a7a9/fuzzy_c_means-1.7.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "32d197c4c6e079e70c0cd2d256ec386e",
"sha256": "c68dcc0931b49d1d76c71bfc6cf49782cb2d3d6b852d94ac2b162367e3c58fe5"
},
"downloads": -1,
"filename": "fuzzy_c_means-1.7.0.tar.gz",
"has_sig": false,
"md5_digest": "32d197c4c6e079e70c0cd2d256ec386e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9,<4.0",
"size": 8454,
"upload_time": "2022-12-09T15:04:58",
"upload_time_iso_8601": "2022-12-09T15:04:58.295003Z",
"url": "https://files.pythonhosted.org/packages/9e/a1/fe18a9cb3a65fe0fbe2e96ec6acf0753a09fe4d24868f42530f7db5df22d/fuzzy_c_means-1.7.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-09 15:04:58",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "omadson",
"github_project": "fuzzy-c-means",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "click",
"specs": [
[
"==",
"8.0.4"
]
]
},
{
"name": "colorama",
"specs": [
[
"==",
"0.4.4"
]
]
},
{
"name": "joblib",
"specs": [
[
"==",
"1.2.0"
]
]
},
{
"name": "numpy",
"specs": [
[
"==",
"1.22.2"
]
]
},
{
"name": "pydantic",
"specs": [
[
"==",
"1.9.0"
]
]
},
{
"name": "tabulate",
"specs": [
[
"==",
"0.8.9"
]
]
},
{
"name": "tqdm",
"specs": [
[
"==",
"4.64.1"
]
]
},
{
"name": "typer",
"specs": [
[
"==",
"0.4.0"
]
]
},
{
"name": "typing-extensions",
"specs": [
[
"==",
"4.1.1"
]
]
}
],
"lcname": "fuzzy-c-means"
}