gbintk


Namegbintk JSON
Version 1.0.0 PyPI version JSON
download
home_pageNone
Summarygbintk (GraphBin-Tk): Assembly graph-based metagenomic binning toolkit
upload_time2024-09-26 02:13:37
maintainerNone
docs_urlNone
authorNone
requires_python<3.13,>=3.9
licenseNone
keywords metagenomics binning contigs bioinformatics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # GraphBin-Tk: assembly graph-based metagenomic binning toolkit

![GitHub License](https://img.shields.io/github/license/metagentools/gbintk)
[![install with bioconda](https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat)](http://bioconda.github.io/recipes/gbintk/README.html)
[![Conda](https://img.shields.io/conda/v/bioconda/gbintk)](https://anaconda.org/bioconda/gbintk)
[![PyPI version](https://badge.fury.io/py/gbintk.svg)](https://badge.fury.io/py/gbintk)
[![CI](https://github.com/metagentools/gbintk/actions/workflows/testing_python_app.yml/badge.svg)](https://github.com/metagentools/gbintk/actions/workflows/testing_python_app.yml)
[![codecov](https://codecov.io/gh/metagentools/gbintk/graph/badge.svg?token=r5sniGexZG)](https://codecov.io/gh/metagentools/gbintk)
[![CodeQL](https://github.com/metagentools/gbintk/actions/workflows/codeql.yml/badge.svg)](https://github.com/metagentools/gbintk/actions/workflows/codeql.yml)
[![Documentation Status](https://readthedocs.org/projects/gbintk/badge/?version=latest)](https://gbintk.readthedocs.io/en/latest/?badge=latest)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

GraphBin-Tk combines assembly graph-based metagenomic bin-refinement and binning techniques [GraphBin](https://github.com/metagentools/GraphBin), [GraphBin2](https://github.com/metagentools/GraphBin2) and [MetaCoAG](https://github.com/metagentools/MetaCoAG) along with additional processing functionality to visualise and evaluate results, into one comprehensive toolkit.

<p align="center">
  <img src="https://raw.githubusercontent.com/metagentools/gbintk/master/docs/images/gbintk_workflow.png" width="800" title="Initial binning" alt="Initial binning">
</p>

For detailed instructions on installation and usage, please refer to the documentation hosted at **[Read the Docs](https://gbintk.readthedocs.io/en/latest/)**.

**NEW:** GraphBin-Tk is now available on [bioconda](https://anaconda.org/bioconda/gbintk) and [PyPI](https://pypi.org/project/gbintk/).

## Installing GraphBin-Tk

### Using conda

You can install GraphBin-Tk using the [bioconda](https://anaconda.org/bioconda/gbintk) distribution. You can download `conda` from 
[Anaconda](https://www.anaconda.com/distribution/) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html). You can also use [`mamba`](https://mamba.readthedocs.io/en/latest/index.html) instead of `conda`.

```shell
# add channels
conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge

# create conda environment
conda create -n gbintk

# activate conda environment
conda activate gbintk

# install gbintk
conda install -c bioconda gbintk

# check gbintk installation
gbintk --help
```

### Using pip

You can install GraphBin-Tk using `pip` from the [PyPI](https://pypi.org/project/gbintk/) distribution.

```shell
# install gbintk
pip install gbintk

# check gbintk installation
gbintk --help
```

### For development

Please follow the steps below to install `gbintk` using `flit` for development.

```shell
# clone repository
git clone https://github.com/metagentools/gbintk.git

# move to gbintk directory
cd gbintk

# create and activate conda env
conda env create -f environment.yml
conda activate gbintk

# install using flit
flit install -s --python `which python`

# test installation
gbintk --help
```

## Available subcommands in GraphBin-Tk

Run `gbintk --help` or `gbintk -h` to list the help message for GraphBin-Tk.

```shell
Usage: gbintk [OPTIONS] COMMAND [ARGS]...

  gbintk (GraphBin-Tk): Assembly graph-based metagenomic binning toolkit

Options:
  -v, --version  Show the version and exit.
  -h, --help     Show this message and exit.

Commands:
  graphbin   GraphBin: Refined Binning of Metagenomic Contigs using...
  graphbin2  GraphBin2: Refined and Overlapped Binning of Metagenomic...
  metacoag   MetaCoAG: Binning Metagenomic Contigs via Composition,...
  prepare    Format the initial binning result from an existing binning tool
  visualise  Visualise binning and refinement results
  evaluate   Evaluate the binning results given a ground truth
```

## Citation

If you use GraphBin-Tk in your work, please cite the relevant tools.

**GraphBin**
> Vijini Mallawaarachchi, Anuradha Wickramarachchi, Yu Lin. GraphBin: Refined binning of metagenomic contigs using assembly graphs. Bioinformatics, Volume 36, Issue 11, June 2020, Pages 3307–3313, DOI: [https://doi.org/10.1093/bioinformatics/btaa180](https://doi.org/10.1093/bioinformatics/btaa180)

**GraphBin2**
> Vijini G. Mallawaarachchi, Anuradha S. Wickramarachchi, and Yu Lin. GraphBin2: Refined and Overlapped Binning of Metagenomic Contigs Using Assembly Graphs. In 20th International Workshop on Algorithms in Bioinformatics (WABI 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 172, pp. 8:1-8:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020). DOI: [https://doi.org/10.4230/LIPIcs.WABI.2020.8](https://doi.org/10.4230/LIPIcs.WABI.2020.8)

> Mallawaarachchi, V.G., Wickramarachchi, A.S. & Lin, Y. Improving metagenomic binning results with overlapped bins using assembly graphs. Algorithms Mol Biol 16, 3 (2021). DOI:  [https://doi.org/10.1186/s13015-021-00185-6](https://doi.org/10.1186/s13015-021-00185-6)

**MetaCoAG**
> Mallawaarachchi, V., Lin, Y. (2022). MetaCoAG: Binning Metagenomic Contigs via Composition, Coverage and Assembly Graphs. In: Pe'er, I. (eds) Research in Computational Molecular Biology. RECOMB 2022. Lecture Notes in Computer Science(), vol 13278. Springer, Cham. DOI: [https://doi.org/10.1007/978-3-031-04749-7_5](https://doi.org/10.1007/978-3-031-04749-7_5)

> Vijini Mallawaarachchi and Yu Lin. Accurate Binning of Metagenomic Contigs Using Composition, Coverage, and Assembly Graphs. Journal of Computational Biology 2022 29:12, 1357-1376. DOI: [https://doi.org/10.1089/cmb.2022.0262](https://doi.org/10.1089/cmb.2022.0262)

## Funding

GraphBin-Tk is funded by an [Essential Open Source Software for Science 
Grant](https://chanzuckerberg.com/eoss/proposals/cogent3-python-apis-for-iq-tree-and-graphbin-via-a-plug-in-architecture/) 
from the Chan Zuckerberg Initiative.

<p align="left">
  <img src="https://chanzuckerberg.com/wp-content/themes/czi/img/logo.svg" width="300">
</p>


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "gbintk",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.9",
    "maintainer_email": null,
    "keywords": "metagenomics, binning, contigs, bioinformatics",
    "author": null,
    "author_email": "Vijini Mallawaarachchi <viji.mallawaarachchi@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/52/25/6b52255b7a5bf9264143d2ba448a3278cf4e5c96ddc927299bc1fed7c899/gbintk-1.0.0.tar.gz",
    "platform": null,
    "description": "# GraphBin-Tk: assembly graph-based metagenomic binning toolkit\n\n![GitHub License](https://img.shields.io/github/license/metagentools/gbintk)\n[![install with bioconda](https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat)](http://bioconda.github.io/recipes/gbintk/README.html)\n[![Conda](https://img.shields.io/conda/v/bioconda/gbintk)](https://anaconda.org/bioconda/gbintk)\n[![PyPI version](https://badge.fury.io/py/gbintk.svg)](https://badge.fury.io/py/gbintk)\n[![CI](https://github.com/metagentools/gbintk/actions/workflows/testing_python_app.yml/badge.svg)](https://github.com/metagentools/gbintk/actions/workflows/testing_python_app.yml)\n[![codecov](https://codecov.io/gh/metagentools/gbintk/graph/badge.svg?token=r5sniGexZG)](https://codecov.io/gh/metagentools/gbintk)\n[![CodeQL](https://github.com/metagentools/gbintk/actions/workflows/codeql.yml/badge.svg)](https://github.com/metagentools/gbintk/actions/workflows/codeql.yml)\n[![Documentation Status](https://readthedocs.org/projects/gbintk/badge/?version=latest)](https://gbintk.readthedocs.io/en/latest/?badge=latest)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n\nGraphBin-Tk combines assembly graph-based metagenomic bin-refinement and binning techniques [GraphBin](https://github.com/metagentools/GraphBin), [GraphBin2](https://github.com/metagentools/GraphBin2) and [MetaCoAG](https://github.com/metagentools/MetaCoAG) along with additional processing functionality to visualise and evaluate results, into one comprehensive toolkit.\n\n<p align=\"center\">\n  <img src=\"https://raw.githubusercontent.com/metagentools/gbintk/master/docs/images/gbintk_workflow.png\" width=\"800\" title=\"Initial binning\" alt=\"Initial binning\">\n</p>\n\nFor detailed instructions on installation and usage, please refer to the documentation hosted at **[Read the Docs](https://gbintk.readthedocs.io/en/latest/)**.\n\n**NEW:** GraphBin-Tk is now available on [bioconda](https://anaconda.org/bioconda/gbintk) and [PyPI](https://pypi.org/project/gbintk/).\n\n## Installing GraphBin-Tk\n\n### Using conda\n\nYou can install GraphBin-Tk using the [bioconda](https://anaconda.org/bioconda/gbintk) distribution. You can download `conda` from \n[Anaconda](https://www.anaconda.com/distribution/) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html). You can also use [`mamba`](https://mamba.readthedocs.io/en/latest/index.html) instead of `conda`.\n\n```shell\n# add channels\nconda config --add channels defaults\nconda config --add channels bioconda\nconda config --add channels conda-forge\n\n# create conda environment\nconda create -n gbintk\n\n# activate conda environment\nconda activate gbintk\n\n# install gbintk\nconda install -c bioconda gbintk\n\n# check gbintk installation\ngbintk --help\n```\n\n### Using pip\n\nYou can install GraphBin-Tk using `pip` from the [PyPI](https://pypi.org/project/gbintk/) distribution.\n\n```shell\n# install gbintk\npip install gbintk\n\n# check gbintk installation\ngbintk --help\n```\n\n### For development\n\nPlease follow the steps below to install `gbintk` using `flit` for development.\n\n```shell\n# clone repository\ngit clone https://github.com/metagentools/gbintk.git\n\n# move to gbintk directory\ncd gbintk\n\n# create and activate conda env\nconda env create -f environment.yml\nconda activate gbintk\n\n# install using flit\nflit install -s --python `which python`\n\n# test installation\ngbintk --help\n```\n\n## Available subcommands in GraphBin-Tk\n\nRun `gbintk --help` or `gbintk -h` to list the help message for GraphBin-Tk.\n\n```shell\nUsage: gbintk [OPTIONS] COMMAND [ARGS]...\n\n  gbintk (GraphBin-Tk): Assembly graph-based metagenomic binning toolkit\n\nOptions:\n  -v, --version  Show the version and exit.\n  -h, --help     Show this message and exit.\n\nCommands:\n  graphbin   GraphBin: Refined Binning of Metagenomic Contigs using...\n  graphbin2  GraphBin2: Refined and Overlapped Binning of Metagenomic...\n  metacoag   MetaCoAG: Binning Metagenomic Contigs via Composition,...\n  prepare    Format the initial binning result from an existing binning tool\n  visualise  Visualise binning and refinement results\n  evaluate   Evaluate the binning results given a ground truth\n```\n\n## Citation\n\nIf you use GraphBin-Tk in your work, please cite the relevant tools.\n\n**GraphBin**\n> Vijini Mallawaarachchi, Anuradha Wickramarachchi, Yu Lin. GraphBin: Refined binning of metagenomic contigs using assembly graphs. Bioinformatics, Volume 36, Issue 11, June 2020, Pages 3307\u20133313, DOI: [https://doi.org/10.1093/bioinformatics/btaa180](https://doi.org/10.1093/bioinformatics/btaa180)\n\n**GraphBin2**\n> Vijini G. Mallawaarachchi, Anuradha S. Wickramarachchi, and Yu Lin. GraphBin2: Refined and Overlapped Binning of Metagenomic Contigs Using Assembly Graphs. In 20th International Workshop on Algorithms in Bioinformatics (WABI 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 172, pp. 8:1-8:21, Schloss Dagstuhl \u2013 Leibniz-Zentrum f\u00fcr Informatik (2020). DOI: [https://doi.org/10.4230/LIPIcs.WABI.2020.8](https://doi.org/10.4230/LIPIcs.WABI.2020.8)\n\n> Mallawaarachchi, V.G., Wickramarachchi, A.S. & Lin, Y. Improving metagenomic binning results with overlapped bins using assembly graphs. Algorithms Mol Biol 16, 3 (2021). DOI:  [https://doi.org/10.1186/s13015-021-00185-6](https://doi.org/10.1186/s13015-021-00185-6)\n\n**MetaCoAG**\n> Mallawaarachchi, V., Lin, Y. (2022). MetaCoAG: Binning Metagenomic Contigs via Composition, Coverage and Assembly Graphs. In: Pe'er, I. (eds) Research in Computational Molecular Biology. RECOMB 2022. Lecture Notes in Computer Science(), vol 13278. Springer, Cham. DOI: [https://doi.org/10.1007/978-3-031-04749-7_5](https://doi.org/10.1007/978-3-031-04749-7_5)\n\n> Vijini Mallawaarachchi and Yu Lin. Accurate Binning of Metagenomic Contigs Using Composition, Coverage, and Assembly Graphs. Journal of Computational Biology 2022 29:12, 1357-1376. DOI: [https://doi.org/10.1089/cmb.2022.0262](https://doi.org/10.1089/cmb.2022.0262)\n\n## Funding\n\nGraphBin-Tk is funded by an [Essential Open Source Software for Science \nGrant](https://chanzuckerberg.com/eoss/proposals/cogent3-python-apis-for-iq-tree-and-graphbin-via-a-plug-in-architecture/) \nfrom the Chan Zuckerberg Initiative.\n\n<p align=\"left\">\n  <img src=\"https://chanzuckerberg.com/wp-content/themes/czi/img/logo.svg\" width=\"300\">\n</p>\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "gbintk (GraphBin-Tk): Assembly graph-based metagenomic binning toolkit",
    "version": "1.0.0",
    "project_urls": null,
    "split_keywords": [
        "metagenomics",
        " binning",
        " contigs",
        " bioinformatics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "73bab02f7e12fb3dbaab32520123bc87d82af9f19983d6458dc9ee24f3e64291",
                "md5": "d8a8f2e24356339a90b86c8db95dce62",
                "sha256": "fb16794f91c35baac758cafc3aa4f41ee2bad05214494b120ee097506b6bae15"
            },
            "downloads": -1,
            "filename": "gbintk-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d8a8f2e24356339a90b86c8db95dce62",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.9",
            "size": 34988,
            "upload_time": "2024-09-26T02:13:35",
            "upload_time_iso_8601": "2024-09-26T02:13:35.802090Z",
            "url": "https://files.pythonhosted.org/packages/73/ba/b02f7e12fb3dbaab32520123bc87d82af9f19983d6458dc9ee24f3e64291/gbintk-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "52256b52255b7a5bf9264143d2ba448a3278cf4e5c96ddc927299bc1fed7c899",
                "md5": "e25eb8a32b474bc9adf075b193ff9197",
                "sha256": "ec2ec47d481fe657736be67a6145e09e169dbdf3c02e7f1c0087b11c69e32ff3"
            },
            "downloads": -1,
            "filename": "gbintk-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "e25eb8a32b474bc9adf075b193ff9197",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.9",
            "size": 28333,
            "upload_time": "2024-09-26T02:13:37",
            "upload_time_iso_8601": "2024-09-26T02:13:37.545222Z",
            "url": "https://files.pythonhosted.org/packages/52/25/6b52255b7a5bf9264143d2ba448a3278cf4e5c96ddc927299bc1fed7c899/gbintk-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-26 02:13:37",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "gbintk"
}
        
Elapsed time: 0.39531s