geokrige


Namegeokrige JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/pdGruby/geokrige
SummaryGeoKrige is a Python package designed for spatial interpolation using Kriging Methods. While primarily tailored for geospatial analysis, it is equally applicable to other spatial analysis tasks.
upload_time2024-03-25 17:45:21
maintainerNone
docs_urlNone
authorKamil Grala
requires_pythonNone
licenseGPL-3.0
keywords python interpolation spatial-analysis kriging geospatial-analysis interpolation-methods geospatial-visualization
VCS
bugtrack_url
requirements numpy geopandas scipy scikit-learn matplotlib pandas shapely rasterio
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <img alt="GeoKrige banner" src="https://geokrige.readthedocs.io/latest/images/geokrige_baner.png"/>
</p>

For comprehensive documentation, please visit the [readthedocs webpage](https://geokrige.readthedocs.io/latest/).

[![PyPi Downloads](https://static.pepy.tech/badge/geokrige)](https://pepy.tech/project/geokrige)
[![Documentation Status](https://readthedocs.org/projects/geokrige/badge/?version=latest)](https://geokrige.readthedocs.io/latest/?badge=latest)
[![DOI](https://zenodo.org/badge/776209752.svg)](https://zenodo.org/doi/10.5281/zenodo.10866997)

## What is GeoKrige?

**GeoKrige is a Python package designed for spatial interpolation using Kriging Methods.** While primarily tailored for 
geospatial analysis, it is equally applicable to other spatial analysis tasks.

**GeoKrige** simplifies kriging interpolation, offering an intuitive interface akin to the `SciKit-learn` package.

## Key Features of GeoKrige

- Seamless integration with the [`GeoPandas`](https://geopandas.org/en/stable/#) and [`rasterio`](https://rasterio.readthedocs.io/en/stable/) packages
- **Generation of interpolated mesh grids aligned with the boundaries of provided shapefiles** (ideal for creating 
interpolation maps)
- Evaluation tool for created kriging models
- **Support for multidimensional interpolation** (Multidimensional Kriging)
- Several default variogram models, flexibility for users to define custom models

## Contribution

There are few topics to which you can contribute:

- implementing the Universal Kriging method
- creating unit tests
- designing a cool-looking logo :)

If you have other ideas on how to improve the package, feel free to share them in the [`Ideas sction`](https://github.com/pdGruby/geokrige/discussions/categories/ideas)

When writing a commit message, please adhere to the guidelines outlined in [this tutorial](https://www.freecodecamp.org/news/how-to-write-better-git-commit-messages/).

**The commit message template:**

- `[<type>/...] <commit message>`

The commit types are described in the linked tutorial, but try to adhere to: `feat`, `bugfix`, `docs`, `refact`, `test`, 
`other`. If a specific commit pertains to multiple types, separate them with `/` and ensure they are ordered 
alphabetically. Keep the commit message title brief and descriptive. If a longer description is necessary, please use 
the second `-m` option.

**Exemplary commit messages:**

- `[bugfix] Fix the 'evaluate' method`

- `[docs/refact] Change the 'KrigingBase' class attributes & adjust the documentation to these changes`

## Support

Please, use the [`Q&A section`](https://github.com/pdGruby/geokrige/discussions/categories/q-a) in case you need a help.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pdGruby/geokrige",
    "name": "geokrige",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, interpolation, spatial-analysis, kriging, geospatial-analysis, interpolation-methods, geospatial-visualization",
    "author": "Kamil Grala",
    "author_email": "grala.kamil@outlook.com",
    "download_url": "https://files.pythonhosted.org/packages/5a/3a/0dc27fcab2ec76d88684442d9db4d254295f3915616cb4bdf69d31915240/geokrige-0.0.1.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n  <img alt=\"GeoKrige banner\" src=\"https://geokrige.readthedocs.io/latest/images/geokrige_baner.png\"/>\n</p>\n\nFor comprehensive documentation, please visit the [readthedocs webpage](https://geokrige.readthedocs.io/latest/).\n\n[![PyPi Downloads](https://static.pepy.tech/badge/geokrige)](https://pepy.tech/project/geokrige)\n[![Documentation Status](https://readthedocs.org/projects/geokrige/badge/?version=latest)](https://geokrige.readthedocs.io/latest/?badge=latest)\n[![DOI](https://zenodo.org/badge/776209752.svg)](https://zenodo.org/doi/10.5281/zenodo.10866997)\n\n## What is GeoKrige?\n\n**GeoKrige is a Python package designed for spatial interpolation using Kriging Methods.** While primarily tailored for \ngeospatial analysis, it is equally applicable to other spatial analysis tasks.\n\n**GeoKrige** simplifies kriging interpolation, offering an intuitive interface akin to the `SciKit-learn` package.\n\n## Key Features of GeoKrige\n\n- Seamless integration with the [`GeoPandas`](https://geopandas.org/en/stable/#) and [`rasterio`](https://rasterio.readthedocs.io/en/stable/) packages\n- **Generation of interpolated mesh grids aligned with the boundaries of provided shapefiles** (ideal for creating \ninterpolation maps)\n- Evaluation tool for created kriging models\n- **Support for multidimensional interpolation** (Multidimensional Kriging)\n- Several default variogram models, flexibility for users to define custom models\n\n## Contribution\n\nThere are few topics to which you can contribute:\n\n- implementing the Universal Kriging method\n- creating unit tests\n- designing a cool-looking logo :)\n\nIf you have other ideas on how to improve the package, feel free to share them in the [`Ideas sction`](https://github.com/pdGruby/geokrige/discussions/categories/ideas)\n\nWhen writing a commit message, please adhere to the guidelines outlined in [this tutorial](https://www.freecodecamp.org/news/how-to-write-better-git-commit-messages/).\n\n**The commit message template:**\n\n- `[<type>/...] <commit message>`\n\nThe commit types are described in the linked tutorial, but try to adhere to: `feat`, `bugfix`, `docs`, `refact`, `test`, \n`other`. If a specific commit pertains to multiple types, separate them with `/` and ensure they are ordered \nalphabetically. Keep the commit message title brief and descriptive. If a longer description is necessary, please use \nthe second `-m` option.\n\n**Exemplary commit messages:**\n\n- `[bugfix] Fix the 'evaluate' method`\n\n- `[docs/refact] Change the 'KrigingBase' class attributes & adjust the documentation to these changes`\n\n## Support\n\nPlease, use the [`Q&A section`](https://github.com/pdGruby/geokrige/discussions/categories/q-a) in case you need a help.\n",
    "bugtrack_url": null,
    "license": "GPL-3.0",
    "summary": "GeoKrige is a Python package designed for spatial interpolation using Kriging Methods. While primarily tailored for geospatial analysis, it is equally applicable to other spatial analysis tasks.",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/pdGruby/geokrige"
    },
    "split_keywords": [
        "python",
        " interpolation",
        " spatial-analysis",
        " kriging",
        " geospatial-analysis",
        " interpolation-methods",
        " geospatial-visualization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "65c464ac9a7b2661b3d496bb8cf9fe910473af46bfcb0ba4d7766a9737ce0797",
                "md5": "dc17cc6102b73604e1d866c40c8bfaeb",
                "sha256": "28523957a1c29400bee4d2d3474247de90734b34d7bdf70869fd96cd355458f6"
            },
            "downloads": -1,
            "filename": "geokrige-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dc17cc6102b73604e1d866c40c8bfaeb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 30817,
            "upload_time": "2024-03-25T17:45:20",
            "upload_time_iso_8601": "2024-03-25T17:45:20.455476Z",
            "url": "https://files.pythonhosted.org/packages/65/c4/64ac9a7b2661b3d496bb8cf9fe910473af46bfcb0ba4d7766a9737ce0797/geokrige-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5a3a0dc27fcab2ec76d88684442d9db4d254295f3915616cb4bdf69d31915240",
                "md5": "b0607fde2a3d1772a44cc68ae0aa78e5",
                "sha256": "bc142f45cf2807c3340f9e77d87dd865b445316de0a52b0f31926f89e3fdf3e4"
            },
            "downloads": -1,
            "filename": "geokrige-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "b0607fde2a3d1772a44cc68ae0aa78e5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 28777,
            "upload_time": "2024-03-25T17:45:21",
            "upload_time_iso_8601": "2024-03-25T17:45:21.747082Z",
            "url": "https://files.pythonhosted.org/packages/5a/3a/0dc27fcab2ec76d88684442d9db4d254295f3915616cb4bdf69d31915240/geokrige-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-25 17:45:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pdGruby",
    "github_project": "geokrige",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.24.3"
                ]
            ]
        },
        {
            "name": "geopandas",
            "specs": [
                [
                    ">=",
                    "0.14.1"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.11.1"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.3.2"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.7.2"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "2.0.3"
                ]
            ]
        },
        {
            "name": "shapely",
            "specs": [
                [
                    ">=",
                    "2.0.2"
                ]
            ]
        },
        {
            "name": "rasterio",
            "specs": [
                [
                    ">=",
                    "1.3.9"
                ]
            ]
        }
    ],
    "lcname": "geokrige"
}
        
Elapsed time: 0.28876s